
CS61B Lecture #20

Administrative:

• Watch the newsgroup for extra TA office hours.

• All requests for alternative times should now be in.

• Midterm 6:30–8:30 Tuesday, 19 October, in 100 Genetics and Plant
Biology Bldg.

Today: Trees as Search Structures (DS(IJ) Chapter 6).

Last modified: Fri Oct 15 14:17:56 2004 CS61B: Lecture #20 1

Divide and Conquer

• Much (most?) computation is devoted to finding things in response
to various forms of query.

• Linear search for response can be expensive, especially when data
set is too large for primary memory.

• Preferable to have criteria for dividing data to be searched into
pieces recursively

• Remember figure for lg N algorithms: at 1µsec per comparison, could
process 10300000 items in 1 sec.

• Tree is a natural framework for the representation:

decision
data

no yes

decision
data

low mid high
Last modified: Fri Oct 15 14:17:56 2004 CS61B: Lecture #20 2

Binary Search Trees

Binary Search Property:

• Tree nodes contain keys, and possibly other data.

• All nodes in left subtree of node have smaller keys.

• All nodes in right subtree of node have larger keys.

• “Smaller” means any complete transitive, anti-symmetric ordering on
keys:

– exactly one of x ≺ y and y ≺ x true.

– x ≺ y and y ≺ z imply x ≺ z.

– (To simplify, won’t allow duplicate keys this semester).

• E.g., in dictionary database, node label would be (word, definition):
word is the key.

Last modified: Fri Oct 15 14:17:56 2004 CS61B: Lecture #20 3

Finding

• Searching for 50 and 49:

42

19

16 25

30

60

50 91

/** Node in T containing L,

* or null if none */

static BST find(BST T, Object L) {

if (T == null)

return T;

if (L.keyequals (T.label()))

return T;

else if (L ≺ T.label())

return find(T.left(), L);

else

return find(T.right (), L);

}

• Dashed boxes show which node labels we look at.

• Number looked at proportional to height of tree.

Last modified: Fri Oct 15 14:17:56 2004 CS61B: Lecture #20 4

Inserting

• Inserting 27

42

*

19

16

*

25

*

30

*

27

60

50 91

/** Insert L in T, replacing existing

* value if present, and returning

* new tree. */

BST insert(BST T, Object L) {

if (T == null)

return new BST(L);

if (L.keyequals (T.label()))

T.setLabel (L);

else if (L ≺ T.label())

T.setLeft(insert (T.left (), L));

else

T.setRight(insert (T.right (), L));

return T;

}

• Starred edges are set (to themselves, unless initially null).

• Again, time proportional to height.

Last modified: Fri Oct 15 14:17:56 2004 CS61B: Lecture #20 5

Deletion

42

19

16 25

30

27

60

50 91

Initial

42

*

19

16

*

25

*

30

*

60

50 91

27

Remove 27

42

*

19

16

*

30

60

50 91

25

Remove 25

50

19

16 30

*

60

*

91

50

Remove 42

formerly contained 42

Last modified: Fri Oct 15 14:17:56 2004 CS61B: Lecture #20 6

A Leap Ahead: Quad Trees

• Want to index information about locations so that items can be re-
trieved by position.

• Quad Trees do so using standard data-structuring trick: Divide and
Conquer.

• Idea: divide (2D) space into four quadrants, and store items in the
appropriate quadrant. Repeat this recursively with each quadrant
that contains more than one item.

• Original definition: a quad tree is either

– Empty, or

– An item at some position (x, y), called the root, plus

– four quad trees, each containing only items that are northwest,
northeast, southwest, and southeast of (x, y).

• Big idea is that if you are looking for point (x′, y′) and the root is not
the point you are looking for, you can narrow down which of the four
subtrees of the root to look in by comparing coordinates (x, y) with
(x′, y′).

Last modified: Fri Oct 15 14:17:56 2004 CS61B: Lecture #20 7

Classical Quad Tree: Example

•

A

•

B

•

C

•

D

•

E

A

B E

C

D

•

D

•

A

•

B

•

C

•

E

D

C B A

E

Last modified: Fri Oct 15 14:17:56 2004 CS61B: Lecture #20 8

Another Kind of Quad Tree

• For our project, it is good to be able to delete items from a tree:
when a particle moves, the subtree that it goes in may change.

• Difficult to do with the classical data structure above, so we’ll de-
fine instead:

• A quadtree consists of a bounding rectangle, B and either

– Nothing (an empty quadtree), or

– An item that lies in that rectangle, or

– Four quadtrees whose bounding rectangles are the four quadrants
of B (all of equal size).

• A completely empty quad tree can have an arbitrary bounding rect-
angle, or you can wait for the first point to be inserted.

Last modified: Fri Oct 15 14:17:56 2004 CS61B: Lecture #20 9

Example of “Our” Quad Tree

-20

-15

-10

0

20

-20 0 5 10 20

A •

B •

• C

• D

0

A B

D C

40

20

10

5

Last modified: Fri Oct 15 14:17:56 2004 CS61B: Lecture #20 10

Navigating Our Quad Trees

• To find an item at (x, y) in quad tree T ,

1. If (x, y) is outside the bounding rectangle of T , or T is empty,
then (x, y) is not in T .

2. Otherwise, if T contains a single item, compare it to (x, y).

3. Otherwise, T consists of four quad trees. Recursively look for
(x, y) in each (however, step #1 above will cause all but one of
these bounding boxes to reject the point immediately).

• Similar procedure works when looking for all items within some rect-
angle, R:

1. If R does not intersect the bounding rectangle of T , or T is
empty, then there are no items in R.

2. Otherwise, if T contains a single item, return it if it is in R, and
otherwise nothing.

3. Otherwise, T consists of four quad trees. Recursively look for
points in R in each one of them.

Last modified: Fri Oct 15 14:17:56 2004 CS61B: Lecture #20 11

Insertion into Our Quad Trees

Various cases for inserting a new point N , showing initial state =⇒ final
state.

(0,0)

(10,10)

=⇒

(0,0)

(10,10)

•N

(0,0)

(10,10)

•

=⇒

(0,0)

(10,10)

•

•N

(0,0)

(10,10)

•

•
•

•
=⇒

(0,0)

(10,10)

•

•
•

•

•N

(0,0)

(5,5)

•

=⇒

(0,0)

(10,10)

•

•N

Last modified: Fri Oct 15 14:17:56 2004 CS61B: Lecture #20 12

	CS61B Lecture #20
	Divide and Conquer
	Binary Search Trees
	Finding
	Inserting
	Deletion
	A Leap Ahead: Quad Trees
	Classical Quad Tree: Example
	Another Kind of Quad Tree
	Example of ``Our'' Quad Tree
	Navigating Our Quad Trees
	Insertion into Our Quad Trees

