## Administrative:

- Watch the newsgroup for extra TA office hours.
- All requests for alternative times should now be in.
- Midterm 6:30-8:30 Tuesday, 19 October, in 100 Genetics and Plant Biology Bldg.

Today: Trees as Search Structures (DS(IJ) Chapter 6).

## Binary Search Trees

## Binary Search Property:

- Tree nodes contain keys, and possibly other data.
- All nodes in left subtree of node have smaller keys.
- All nodes in right subtree of node have larger keys.
- "Smaller" means any complete transitive, anti-symmetric ordering on keys:
- exactly one of $x \prec y$ and $y \prec x$ true.
$-x \prec y$ and $y \prec z$ imply $x \prec z$.
- (To simplify, won't allow duplicate keys this semester).
- E.g., in dictionary database, node label would be (word, definition): word is the key.


## Divide and Conquer

- Much (most?) computation is devoted to finding things in response to various forms of query.
- Linear search for response can be expensive, especially when data set is too large for primary memory.
- Preferable to have criteria for dividing data to be searched into pieces recursively
- Remember figure for $\lg N$ algorithms: at $1 \mu \mathrm{sec}$ per comparison, could process $10^{300000}$ items in 1 sec .
- Tree is a natural framework for the representation:



## Finding

- Searching for 50 and 49:


```
/** Node in T containing L,
    * or null if none */
static BST find(BST T, Object L) \{
    if ( \(T==\) null)
    return T ;
    if (L.keyequals (T.label()))
        return T;
    else if (L \(\prec\) T.label ())
        return find(T.left(), L);
    else
                            return find(T.right (), L);
```

\}

- Dashed boxes show which node labels we look at.
- Number looked at proportional to height of tree.


## Inserting

- Inserting 27

/** Insert L in T, replacing existing
* value if present, and returning
* new tree. */

BST insert(BST T, Object L) \{
if ( $T==$ null)
return new BST(L);
if (L.keyequals (T.label()))
T.setLabel (L);
else if (L $\prec$ T.label ())
T.setLeft(insert (T.left (), L)); else
T.setRight(insert (T.right (), L)); return T ; \}

- Starred edges are set (to themselves, unless initially null).
- Again, time proportional to height.


## A Leap Ahead: Quad Trees

- Want to index information about locations so that items can be retrieved by position.
- Quad Trees do so using standard data-structuring trick: Divide and Conquer.
- Idea: divide (2D) space into four quadrants, and store items in the appropriate quadrant. Repeat this recursively with each quadrant that contains more than one item.
- Original definition: a quad tree is either
- Empty, or
- An item at some position $(x, y)$, called the root, plus
- four quad trees, each containing only items that are northwest, northeast, southwest, and southeast of $(x, y)$.
- Big idea is that if you are looking for point $\left(x^{\prime}, y^{\prime}\right)$ and the root is not the point you are looking for, you can narrow down which of the four subtrees of the root to look in by comparing coordinates $(x, y)$ with $\left(x^{\prime}, y^{\prime}\right)$.


## Another Kind of Quad Tree

- For our project, it is good to be able to delete items from a tree: when a particle moves, the subtree that it goes in may change.
- Difficult to do with the classical data structure above, so we'll define instead:
- A quadtree consists of a bounding rectangle, $B$ and either
- Nothing (an empty quadtree), or
- An item that lies in that rectangle, or
- Four quadtrees whose bounding rectangles are the four quadrants of $B$ (all of equal size).
- A completely empty quad tree can have an arbitrary bounding rectangle, or you can wait for the first point to be inserted.



Last modified: Fri Oct 15 14:17:56 2004
CS61B: Lecture \#20 10

## Navigating Our Quad Trees

- To find an item at $(x, y)$ in quad tree $T$,

1. If $(x, y)$ is outside the bounding rectangle of $T$, or $T$ is empty, then $(x, y)$ is not in $T$.
2. Otherwise, if $T$ contains a single item, compare it to $(x, y)$.
3. Otherwise, $T$ consists of four quad trees. Recursively look for $(x, y)$ in each (however, step \#1 above will cause all but one of these bounding boxes to reject the point immediately).

- Similar procedure works when looking for all items within some rectangle, $R$ :

1. If $R$ does not intersect the bounding rectangle of $T$, or $T$ is empty, then there are no items in $R$.
2. Otherwise, if $T$ contains a single item, return it if it is in $R$, and otherwise nothing.
3. Otherwise, $T$ consists of four quad trees. Recursively look for points in $R$ in each one of them.

## Insertion into Our Quad Trees

Various cases for inserting a new point $N$, showing initial state $\Longrightarrow$ final state.

$(0,0)$
$(0,0)$

$(0,0)$
$(10,10)$

$(0,0)$

$(0,0)$
$(0,0)$
$(0,0)$

$(0,0)$
$(10,10)$

