
CS61B Lecture #19

Administrative:

• Please arrange alternative test times with us by e-mail.

• Labs this week devoted to test review. We suspect that Wednesday
labs will get commandeered by project questions, so you might want
to attend a Thursday lab as well if you want test review.

• A few review questions from the TAs are posted in the Lab #6
directory for this week (see the homework page).

• If you want timely response, use bug-submit.

Today:

• Trees

Readings for Today: Data Structures, Chapter 5

Readings for Next Topic: Data Structures, Chapter 6

Last modified: Wed Oct 13 16:11:25 2004 CS61B: Lecture #19 1

A Recursive Structure

• Trees naturally represent recursively defined, hierarchical objects
with more than one recursive subpart for each instance.

• Common examples: expressions, sentences.

– Expressions have definitions such as “an expression consists of a
literal or two expressions separated by an operator.”

• Also describe structures in which we recursively divide a set into
multiple subsets.

Last modified: Wed Oct 13 16:11:25 2004 CS61B: Lecture #19 2

Fundamental Operation: Traversal

• Traversing a tree means enumerating (some subset of) its nodes.

• Typically done recursively, because that is natural description.

• As nodes are enumerated, we say they are visited.

• Three basic orders for enumeration (+ variations):

– Preorder: visit node, traverse its children.

– Postorder: traverse children, visit node.

– Inorder: traverse first child, visit node, traverse second child
(binary trees only).

6

3

0 2

1

5

4

Postorder

0

1

2 3

4

5

6

Preorder

4

1

0 3

2

5

6

inorder

Last modified: Wed Oct 13 16:11:25 2004 CS61B: Lecture #19 3

Preorder Traversal and Prefix Expressions

Problem: Convert

-

-

*

x +

y 3

z

⇒ (- (- (* x (+ y 3))) z)

static String toLisp (Tree<String> T) {

if (T == null)

return "";

else if (T.degree () == 0)

return T.label ();

else {

String R; R = "";

for (int i = 0; i < T.numChildren (); i += 1)

R += " " + toLisp (T.child (i));

return String.format ("(%s%s)", T.label (), R);

}

}

Last modified: Wed Oct 13 16:11:25 2004 CS61B: Lecture #19 4

Inorder Traversal and Infix Expressions

Problem: Convert
-

-

*

x +

y 3

z

⇒ ((-(x*(y+3)))-z)
To think about: how to
get rid of all those paren-
theses.

static String toInfix (Tree<String> T) {

if (T == null)

return "";

if (T.degree () == 0)

return T.label ();

else {

return String.format ("(%s%s%s)",

toInfix (T.left ()), T.label (), toInfix (T.right ())

}

}

Last modified: Wed Oct 13 16:11:25 2004 CS61B: Lecture #19 5

Postorder Traversal and Postfix Expressions

Problem: Convert

-

-

*

x +

y 3

z

⇒ x y 3 +:2 *:2 -:1 z -:2

static String toPolish (Tree<String> T) {

if (T == null)

return "";

else {

String R; R = "";

for (int i = 0; i < T.numChildren (); i += 1)

R += toPolish (T.child (i)) + " ";

return String.format ("%s%s:%d", R, T.label (), T.degree ());

}

}

Last modified: Wed Oct 13 16:11:25 2004 CS61B: Lecture #19 6

A General Traversal: The Visitor Pattern

void preorderTraverse (Tree T<Label>, Action<Label> whatToDo)

{

if (T != null) {

whatToDo.action (T);

for (int i = 0; i < T.numChildren (); i += 1)

preorderTraverse (T.child (i), whatToDo);

}

}

• What is Action?

interface Action<Label> {

void action (Tree<Label> T);

}

class Print implements Action<String> | preorderTraverse (myTree,

void action (Tree<String> T) { | new Print ());

System.out.print (T.label ()); |

} |

} |

Last modified: Wed Oct 13 16:11:25 2004 CS61B: Lecture #19 7

Times

• The traversal algorithms have roughly the form of the boom example
in §1.3.3 of Data Structures—an exponential algorithm.

• However, the role of M in that algorithm is played by the height of
the tree, not the number of nodes.

• In fact, easy to see that tree traversal is linear: Θ(N), where N
is the # of nodes: Form of the algorithm implies that there is one
visit at the root, and then one visit for every edge in the tree.
Since every node but the root has exactly one parent, and the root
has none, must be N − 1 edges in any non-empty tree.

• In positional tree, is also one recursive call for each empty tree, but
of empty trees can be no greater than kN , where k is arity.

• For k-ary tree (max # children is k), h + 1 ≤ N ≤ kh+1−1

k−1
, where h is

height.

• So h ∈ Ω(logk N) = Ω(lg N) and h ∈ O(N).

• Many tree algorithms look at one child only. For them, time is pro-
portional to the height of the tree, and this is Θ(lg N), assuming
that tree is bushy—each level has about as many nodes as possible.

Last modified: Wed Oct 13 16:11:25 2004 CS61B: Lecture #19 8

Level-Order (Breadth-First) Traversal

Problem: Traverse all nodes at depth 0, then depth 1, etc:

0

1

3 4

6

2

5

• One technique: Iterative Deepening. For each level, k, from 0 to h,
call doLevel(T,k)

void doLevel (Tree T, int lev) {

if (lev == 0)

visit T

else

for each non-null child, C, of T {

doLevel (C, lev-1);

}

}

Last modified: Wed Oct 13 16:11:25 2004 CS61B: Lecture #19 9

Iterative Deepening Time?

0

1

3

7 8

4

9 10

2

5

11 12

6

13 14

0

1

2

3

• Let h be height, N be # of nodes.

• Count # edges traversed (i.e, # of calls, not counting null nodes).

• First (full) tree: 1 for level 0, 3 for level 1, 7 for level 2, 15 for level
3.

• Or in general (21 − 1) + (22 − 1) + . . . + (2h+1 − 1) = 2h+2 − h ∈ Θ(N),
since N = 2h+1 − 1 for this tree.

• Second (right leaning) tree: 1 for level 0, 2 for level 2, 3 for level 3.

• Or in general (h + 1)(h + 2)/2 = N(N + 1)/2 ∈ Θ(N 2), since N = h + 1
for this kind of tree.

Last modified: Wed Oct 13 16:11:25 2004 CS61B: Lecture #19 10

Iterative Traversals

• Tree recursion conceals data: a stack of nodes (all the T arguments)
and a little extra information. Can make the data explicit, e.g.:

void preorderTraverse2 (Tree T<T>, Action whatToDo) {

Stack s = new Stack ();

s.push (T);

while (! s.isEmpty ()) {

Tree node = (Tree) s.pop ();

if (node == null)

continue;

whatToDo.action (node);

for (int i = node.numChildren ()-1; i >= 0; i -= 1)

s.push (node.child (i));

}

}

• To do a breadth-first traversal, use a queue instead of a stack,
replace push with add, and pop with removeFirst.

• Makes breadth-first traversal worst-case linear time in all cases,
but also linear space for “bushy” trees.

Last modified: Wed Oct 13 16:11:25 2004 CS61B: Lecture #19 11

Iterators for Trees

• Frankly, iterators are not terribly convenient on trees.

• But can use ideas from iterative methods.

class PreorderTreeIterator<T> implements Iterator<T> {

private Stack<Tree<T>> s = new Stack<Tree<T>> ();

public PreorderTreeIterator (Tree<T> T) { s.push (T); }

public boolean hasNext () { return ! s.isEmpty (); }

public T next () {

Tree<T> result = s.pop ();

for (int i = result.numChildren ()-1; i >= 0; i -= 1)

s.push (result.child (i));

return result.label ();

}

void remove () { throw new UnsupportedOperationException (); }

}

Example: (what do I have to add to class Tree first?)

for (String label : aTree) System.out.print (label + " ");

Last modified: Wed Oct 13 16:11:25 2004 CS61B: Lecture #19 12

Representation Choices

0

1. . . 2. . . 3. . .

(a) Embedded child pointers
(+ optional parent pointers)

0

1. . . 2. . . 3. . .

(b) Array of child pointers
(+ optional parent pointers)

0

1 2 3

0

1 2 3

.

(c) child/sibling pointers

0 1 2 3 · · ·

(d) pre-order array
(complete trees)

Last modified: Wed Oct 13 16:11:25 2004 CS61B: Lecture #19 13

	CS61B Lecture #19
	A Recursive Structure
	Fundamental Operation: Traversal
	Preorder Traversal and Prefix Expressions
	Inorder Traversal and Infix Expressions
	Postorder Traversal and Postfix Expressions
	A General Traversal: The Visitor Pattern
	Times
	Level-Order (Breadth-First) Traversal
	Iterative Deepening Time?
	Iterative Traversals
	Iterators for Trees
	Representation Choices

