
CS61B Lecture #18

• Administrative:

– Initial test run of Project #1 tonight.

– No homework due Wednesday, but there will be a lab devoted to
test review.

• Today:

– Array vs. linked: tradeoffs

– Sentinels

– Specialized sequences: stacks, queues, deques

– Circular buffering

– Recursion and stacks

– Adapters

• Readings for Today: DS(IJ), Chapter 4;

• Readings for Next Topic: DS(IJ), Chapter 5;

Last modified: Mon Oct 11 11:57:19 2004 CS61B: Lecture #18 1

Arrays and Links

• Two main ways to represent a sequence: array and linked list

• In Java Library: ArrayList and Vector vs. LinkedList.

• Array:

– Advantages: compact, fast (Θ(1)) random access (indexing).

– Disadvantages: insertion, deletion can be slow (Θ(N))

• Linked list:

– Advantages: insertion, deletion fast once position found.

– Disadvantages: space (link overhead), random access slow.

Last modified: Mon Oct 11 11:57:19 2004 CS61B: Lecture #18 2

Implementing with Arrays

• Biggest problem using arrays is insertion/deletion in the middle of a
list (must shove things over).

• Adding/deleting from ends can be made fast:

– Double array size to grow; amortized cost constant (Lecture #15).

– Growth at one end really easy; classical stack implementation:

S.push ("X");

S.push ("Y");

S.push ("Z");
S: A:

size: 3
X Y Z

add here

– To allow growth at either end, use circular buffering:

F I HG

add here

firstlast
– Random access still fast.

Last modified: Mon Oct 11 11:57:19 2004 CS61B: Lecture #18 3

Linking

• Essentials of linking should now be familiar

• Used in Java LinkedList. One possible representation:

β

α β

α

sentinel
axolotl kludge xerophyte

L:
3

I: LinkedList.this

lastReturned

here

1 nextIndex

L = new LinkedList<String>();

L.add("axolotl");

L.add("kludge");

L.add("xerophyte");

I = L.listIterator();

I.next();

Last modified: Mon Oct 11 11:57:19 2004 CS61B: Lecture #18 4

Clever trick: Sentinels

• A sentinel is a dummy object containing no useful data except links.

• Used to eliminate special cases and to provide a fixed object to
point to in order to access a data structure.

• Avoids special cases (‘if’ statements) by ensuring that the first and
last item of a list always have (non-null) nodes—possibly sentinels—
before and after them:

• // To delete list node at p: // To add new node N before p:

p.next.prev = p.prev; N.prev = p.prev; N.next = p;

p.prev.next = p.next; p.prev.next = N;

p.prev = N;

p:Initially · · · :N

p: · · · p: · · ·

Last modified: Mon Oct 11 11:57:19 2004 CS61B: Lecture #18 5

Specialization

• Traditional special cases of general list:

– Stack: Add and delete from one end (LIFO).

– Queue: Add at end, delete from front (FIFO).

– Dequeue: Add or delete at either end.

• All of these easily representable by either array (with circular buffer-
ing for queue or deque) or linked list.

• Java has the List types, which can act like any of these (although
with non-traditional names for some of the operations).

• Also has java.util.Stack, a subtype of List, which gives tradi-
tional names (“push”, “pop”) to its operations. There is, however, no
“stack” interface.

Last modified: Mon Oct 11 11:57:19 2004 CS61B: Lecture #18 6

Stacks and Recursion

• Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

– Calls become “push current variables and parameters, set param-
eters to new values, and loop.”

– Return becomes “pop to restore variables and parameters.”

findExit(start):

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start:

if legalPlace(x)

findExit(x)

1 2

3

4

5

6

7

8 9 101112

13

14

15 16 17
Call: findExit(0)

Exit: 16

findExit(start):

S = new empty stack;

push start on S;

while S not empty:

pop S into start;

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start (in reverse):

if legalPlace(x)

push x on S

Last modified: Mon Oct 11 11:57:19 2004 CS61B: Lecture #18 7

Design Choices: Extension, Delegation, Adaptation

• The standard java.util.Stack type extends Vector:

class Stack<Item> extends Vector<Item> { void push (Item x) { add (x); } ... }

• Could instead have delegated to a field:

class ArrayStack<Item> {

private ArrayList<Item> repl = new ArrayList<Item> ();

void push (Item x) { repl.add (x); } ...

}

• Or, could generalize, and define an adapter: a class used to make
objects of one kind behave as another:

public class StackAdapter<Item> {

private List repl;

/** A stack that uses REPL for its storage. */

public StackAdapter (List<Item> repl) { this.repl = repl; }

public void push (Item x) { repl.add (x); } ...

}

class ArrayStack<Item> extends StackAdapter<Item> {

ArrayStack () { super (new ArrayList<Item> ()); }

}

Last modified: Mon Oct 11 11:57:19 2004 CS61B: Lecture #18 8

	CS61B Lecture #18
	Arrays and Links
	Implementing with Arrays
	Linking
	Clever trick: Sentinels
	Specialization
	Stacks and Recursion
	Design Choices: Extension, Delegation, Adaptation

