CS61B Lecture #15

Today:
e Asymptotic complexity (from last time)
e Overview of standard Java Collections classes.

- Iterators, ListIterators
- Containers and maps in the abstract
- Views
Readings for Today: Data Structures, Chapter 2.

Readings for next Topic: Data Structures, Chapter 3.

Now on-line: Lab #5 (there are parts that you ought to do before
lab), sample project solution.

Last modified: Fri Oct 8 14:32:37 2004 CS61B: Lecture #15 1

Some Intuition on Meaning of Growth

e How big a problem can you solve in a given fime?

e In the following table, left column shows time in microseconds to
solve a given problem as a function of problem size N.

e Entries show the size of problem that can be solved in a second,
hour, month (31 days), and century, for various relationships be-
tween time required and problem size.

e N = problem size

Time (usec) for Max N Possible in

problem size N | 1second 1 hour 1 month 1 century

lo N 1()300000 101000000000 108-1011 109-1014

N 106 3.6-10° 2.7-10 32-10%
NlgN 63000 1.3 - 108 7.4 .10 6.9 - 103

N? 1000 60000 1.6 - 10° 5.6 - 107

N3 100 1500 14000 150000

oN 20 32 41 51

Last modified: Fri Oct 8 14:32:37 2004 CS61B: Lecture #15 2

New Topic: Data Types in the Abstract

e Most of the time, should not worry about implementation of data
structures, search, etc.

e What they do for us—their specification—is important.

e Java has several standard types (in java.util) to represent collec-
tions of objects

- Six interfaces:

* Collection: General collections of items.
* List: Indexed sequences with duplication
* Set, SortedSet: Collections without duplication
* Map, SortedMap: Dictionaries (key — value)
- Concrete classes that provide actual instances: LinkedList, ArrayList,
HashSet, TreeSet.

- To make change easier, purists would use the concrete types only
for new, interfaces for parameter types, local variables.

Last modified: Fri Oct 8 14:32:37 2004 CS61B: Lecture #15 3

Collection Structures in java.util

|
|
|
|
|
|
|
|

SortedSet

LinkedList

Vector

HashSet| |TreeSet

A

Stack

HashMap

WeakHashMap

Last modified: Fri Oct 8 14:32:37 2004

class

—— . extends
----= implements

CS61B: Lecture #15 4

The Collection Interface

e Collection interface. Main functions promised:

- Membership tests: contains (€), containsAll (C)
- Other queries: size, isEmpty
- Retrieval: iterator, toArray

- Optional modifiers: add, addAll, clear, remove, removeAll (set
difference), retainAll (intersect)

e Design point (a side trip): Optional operations may throw

UnsupportedOperationException

e An alternative design would have separate interfaces:

interface Collection { contains, containsAll, size, iterator, ... }
interface Expandable { add, addAll }
interface Shrinkable { remove, removeAll, difference, ... }

interface ModifiableCollection
extends Collection, Expandable, Shrinkable { }

You'd soon have lots of interfaces. Perhaps that's why they didn't
do it that way.)

Last modified: Fri Oct 8 14:32:37 2004 CS61B: Lecture #15 5

Problem: How to Retrieve?

e Collections don't always have an order—no first, no n™, no get.
e So how to get things out?

e Even for types of Collection that do have an ordering, indexing (as
for arrays) not always best (fastest) way to get elements.

e Abstraction to the rescue: define retrieval interface:

package java.util;
public interface Iterator<Item> {
/*x True iff there’s more. */
boolean hasNext ();
/** Return next item and then move on. */
Item next ();
/** Remove last item returned by next() from underlying
* Collection. May throw exception if unsupported. */
void remove ();

+
e Tterator is a kind of "moving finger” through a Collection.

o (New syntax 'Iterator<Item> indicates a parameterized type. For
now, read as "Iterator of any reference type Item.)"

Last modified: Fri Oct 8 14:32:37 2004 CS61B: Lecture #15 6

The List Interface

e Extends Collection
e Intended to represent indexed sequences (generalized arrays)
e Adds new methods to those of Collection:

- Membership tests: index0f, lastIndex0f.

- Retrieval: get (i), listIterator(), sublist(B, F).

- Modifiers: add and addAll with additional index fo say where to
add. Likewise for removal operations. set operation to go with
get.

e Type ListIterator<Item> extends Iterator<Item>:

- Adds previous and hasPrevious.
- nextIndex gives position in list.

- add, remove, and set allow one to iterate through a list, inserting,
removing, or changing as you go.

Last modified: Fri Oct 8 14:32:37 2004 CS61B: Lecture #15 7

Example of Use: Reverse a File

Problem: Print the lines of a file in reverse order.

BufferedReader r = ...; // Some source of lines
List<String> items = new LinkedList<String> ();
for (String s = r.readline (); s !'= null; s = r.readLine ())

items.add (0, s); // Add to front
for (int i = 0; i < items.size (); i += 1)
System.out.println (items.get (i));

e Disadvantage: On a LinkedList, get (k) is a O(k) operation, leading
to ©(N?) algorithm, for lists of size N.

Last modified: Fri Oct 8 14:32:37 2004 CS61B: Lecture #15 8

Faster Reversal

e The iterator method is intended to return an iterator that is tuned
to the data structure, and generally O(1) in time.

e With ordered collection (like List), iterator is also ordered.

BufferedReader r = ...; // Some source of lines
List<String> items = new LinkedList<String> ();
for (String s = r.readline (); s !'= null; s = r.readLine ())

items.add (0, s);
for (Iterator<String> i = items.iterator (); i.hasNext ();)
System.out.println (i.next ());

e Form of last loop is so common, there's new "syntactic sugar”:

for (String s : items)
System.out.println (s);

Last modified: Fri Oct 8 14:32:37 2004 CS61B: Lecture #15 9

Example of Use II: Inserting New Elements

Problem: After first instance of one object, insert a new object.

/*x Insert OBJ after EXISTING in L. */
static void insertAfter (List<Object> L, Object obj, Object existing)
{
for (ListIterator<Object> i = L.listIterator (); i.hasNext ();) {
Object x = i.next Q);
if (existing.equals (x)) {
i.add (obj);
break;
+
¥
¥

e Question: How about this implementation:

int k = L.index0f (existing);
if (k !'= -1)
L.add (k+1, obj);

e Important Question: What advantage is there to saying List L
rather than LinkedList L or ArrayList L?

Last modified: Fri Oct 8 14:32:37 2004 CS61B: Lecture #15 10

Views
New Concept: A view is an alternative presentation of (interface to)
an existing object.

e For example, the sublist method is supposed to yield a "view of"
part of an existing list:

L: - at ' ax ban baticat
o | List<String> L = new ArrayList<String>();
L.add ("at"); L.add("ax"); ...
List<String> SL = L.sublist (1,4);
SL: - |

e Example: after L.set (2, "bag"), value of SL.get(1) is "bag", and
after SL.set(1,"bad"), value of L.get (2) is "bad".

e Example: after SL.clear (), L will contain only "at" and "cat".
e Small challenge: "How do they do that?!"

Last modified: Fri Oct 8 14:32:37 2004 CS61B: Lecture #15 11

Maps

[

e A Map is a kind of "modifiable function:'

package java.util;
public interface Map<Key,Value> {
Value get (Object key); // Value at KEY.
Object put (Key key, Value value); // Set get(KEY) -> VALUE

Map<String,String> f = new TreeMap<String,String> ();
f.put ("Paul", "George"); f.put ("George", "Martin");
f.put ("Dana", "John");

// Now f.get ("Paul").equals ("George")

// f.get ("Dana").equals ("John")

// f.get ("Tom") == null

Last modified: Fri Oct 8 14:32:37 2004 CS61B: Lecture #15 12

Map Views

public interface Map<Key,Value> { // Continuation
/* VIEWS */

/** The set of all keys. */
Set<Key> keySet ();
/** The multiset of all values */
Collection<Value> values ();
/** The set of all (key, value) pairs */
Set<Map.Entry<Key,Value>> entrySet ();

¥
Using example from previous slide:

for (Iterator<String> i = f.keySet.iterator (); i.hasNext ();)
i.next () ===> Dana, George, Paul

// or, just:

for (String name : f.keySet ())
name ===> Dana, George, Paul

for (String parent : f.values ())

parent ===> John, Martin, George
for (Map.Entry<String,String> pair : f.entrySet ())
pair === (Dana,John), (George,Martin), (Paul,George)

f.keySet ().remove ("Dana"); // Now f.get("Dana") == null

Last modified: Fri Oct 8 14:32:37 2004 CS61B: Lecture #15 13

	CS61B Lecture #15
	Some Intuition on Meaning of Growth
	New Topic: Data Types in the Abstract
	Collection Structures in java.util
	The Collection Interface
	Problem: How to Retrieve?
	The List Interface
	Example of Use: Reverse a File
	Faster Reversal
	Example of Use II: Inserting New Elements
	Views
	Maps
	Map Views

