
CS61B Lecture #13

Administrative:

• Before Project #1 due date, will run auto-grader testsMonday night
only (sometime after midnight). If you get something submitted by
then, you’ll see the results of our testing on it. You can still resubmit
until deadline.

• Otherwise (if you finish at the last minute), you aren’t penalized,
but you’ll have to rely on your own testing.

Today:

Readings for Today: Blue Reader, §5

Readings for next Topic: Yellow Reader, Chapter 1.

Last modified: Wed Sep 29 16:08:39 2004 CS61B: Lecture #13 1

String as a Simple Sequence Type

• Strings are essentially arrays of characters (with lots of specialized
methods) that are immutable: cannot be changed.

• The assignments

String S1 = "Hello, world";

String S2 = S1;

S1 = "Goodbye, world";

change what string S1 is pointing to, but nothing you do to S1 can
change the String object that S2 points to.

• All instance variables in a String are private and no method changes
the visible state of a String object.

• So programming with Strings is inherently functional (in the sense
of CS61A).

Last modified: Wed Sep 29 16:08:39 2004 CS61B: Lecture #13 2

A Question of Efficiency

• In general, the time required to concatenate two strings, as in

String msg = prefix + suffix;

requires time proportional to msg.length (): must create a new
String and then copy the contents of prefix and suffix into it.

• There are special cases: when can this concatenation be done much
faster?

• Roughly how long does the following take?

String r;

r = "";

for (int i = 0; i < N; i += 1)

r += " "; // Same as r = r + " " (just as for numbers).

• Better to use StringBuilder to build it: a kind of modifiable String:

StringBuilder b = new StringBuilder ();

for (int i = 0; i < N; i += 1)

b.append (’ ’); // Takes constant amount of time "sort of"

String r = b.toString ();

This all requires time proportional to N.

Last modified: Wed Sep 29 16:08:39 2004 CS61B: Lecture #13 3

Idea: Pattern-Driven Output

• Java’s Formatter class used by PrintStream.printf and String.format

to produce a String from a pattern String and arguments.

• A Formatter is essentially like a PrintStream (like System.out). To
create one, say where the things you format with it are to go:

Formatter buildString = new Formatter (); // Builds a String

Formatter buildFile = new Formatter (nameOfFile); // Sends to file.

then use as we have been using System.out:

buildString.format ("The value of %d + %d is %d%n", x, y, x+y);

buildFile.format ("%s is %6.2f ft. tall%n", p.name, p.height);

and finally extract or finalize the result:

buildFile.close ();

return buildString.toString ();

Last modified: Wed Sep 29 16:08:39 2004 CS61B: Lecture #13 4

Format Specifiers

• General form ([] indicates optional):

%[argument num$][flags][width][.precision]conversion

• Tell which of the arguments to convert (usually defaulted), what
optional format to use, minimum number of characters, maximum
number of characters or number of decimal places, and what kind of
conversion is desired.

• Examples:

String.format ("%d", 1000) => "1000" String.format ("%(d", 10) => "10"

String.format ("%5d", 1000) => " 1000" String.format ("%(d", -10) => "(10)"

String.format ("%05d", 1000) => "01000" String.format ("%,d", 1000) => "1,000"

• The %s conversion is a kind of “general” conversion. The .toString()
method is called (if non-null). Allows you to format almost anything.

Last modified: Wed Sep 29 16:08:39 2004 CS61B: Lecture #13 5

Interesting Design Points

• Formatter and associated classes demonstrate several interesting
uses of OOP.

• Use of .toString.

• The target (where the characters go) is more general than String or
file. Can call new Formatter(T) as long as T implements Appendable
(basically: as long as it has a couple of basic append methods).

• The effect of %s can be customized. If an argument to be converted
by %s has a type that implements Formattable. This interface re-
quires a method

void formatTo (Formatter fmt, int flags, int width, int precision);

If the value of x implements this method, then out.printf ("%#5.2s", x)

will call it to format x, giving it the width (5), precision (2), and flags
(an encoding of #).

• I’m guessing that Formatter probably uses instanceof here:

if (value instanceof Formattable)

((Formattable) value).formatTo (...);

Last modified: Wed Sep 29 16:08:39 2004 CS61B: Lecture #13 6

New Topic: Patterns

• A regular expression describes a set of strings.

x means { "x" }

[ac-f] means { "a", "c", "d", "e", "f" }

\d means { "0", "1", ..., "9" }

yes|no means { "yes", "no" }

(yes,)* means { "", "yes,", "yes,yes,", "yes,yes,yes", ...}

(yes,)+ means { "yes,", "yes,yes,", ... }

• In Java, the Pattern and Matcher classes (used by Scanner, String,
and others) give you regular expressions, which allow you to describe
and parse Strings.

• One example (you’ll be doing stuff in lab, too): convert all instances
of "<r,c>" in the String S to <c,r>", where r and c are integers:

S = S.replaceAll ("<(\\d+),(\\d+)>", "<$2,$1>");

Last modified: Wed Sep 29 16:08:39 2004 CS61B: Lecture #13 7

	CS61B Lecture #13
	String as a Simple Sequence Type
	A Question of Efficiency
	Idea: Pattern-Driven Output
	Format Specifiers
	Interesting Design Points
	New Topic: Patterns

