CS61B Lecture #12: Integers Integer Types and Literals

Today: Bits | Signed? Literals
8|Yes
16 | Yes

e Integer Types

’a’ // (char) 97

Readings for Today: Blue Reader, Chapter 4. \n’ // newline ((char) 10)

16 |No ’\t’ // tab ((char) 8)

Readings for Upcoming Topics: Blue Reader, Chapter 5, Yellow Reader, A\’ // backslash

Chapter 1. ’A’, °\101’, ’\u0041’ // == (char) 65

123

int 32 |Yes 0100 // Octal for 64

0x3f, Oxffffffff // Hexadecimal 63, -1 (!)
123L, 01000L, 0x3fL

1234567891011L

Reminder: Have you started Project #1 yet?

long | 64 Yes

e "N bits" means that there are 2" integers in the domain of the type.
e If signed, range of values is —2V-1 .. 2V-1 1,

e If unsigned, only non-negative numbers, and range is 0..2" — 1.

e Negative numerals are just negated (positive) literals.

e Use casting for byte and short: (byte) 12, (short) 2000.

Last modified: Mon Sep 27 12:09:51 2004 CS61B: Lecture #12 1 Last modified: Mon Sep 27 12:09:51 2004 CS61B: Lecture #12 2

Modular Arithmetic Modular Arithmetic IT

e Problem: How do we handle overflow, such as occurs in 10000%x10000%10000? e (byte) (64x8) yields 0, since 512 — 0 =225,

e Some languages throw an exception (Ada), some give undefined re- o (byte) (64x2) and (byte) (127+1) yield -128, since 128 — (—128) =
sults (C, C++) 1-28,

e Java defines the result of any arithmetic operation or conversion o (byte) (345%6) yields 22, since 2070 — 22 = § - 25,
on integer types fo “wrap around“—modular arithmetic. o (byte) (-30%13) yields 122, since —390 — 122 = —2 - 25,

e That is, the "next number” after the largest in an integer type is e (char) (-1) yields 2! —1, since —1 — (2!0 — 1) = 216,
the smallest (like “clock arithmetic").

e Why this definition? Quite natural for a machine that uses binary
e Eg., (byte) 128 == (byte) (127+1) == (byte) -128 (base 2) arithmetic:

e In general, Type char Type byte

- If the result of some arithmetic subexpression is supposed to 0 = 00000000,

have type T, an n-bit integer type, ' 0 = 0000000000000000; 1 = 00000001,
- then we compute the real (mathematical) value, z, 916 _ 1 — 1111111111111111, 127 = 01111111,
- and yield a number, 2/, that is in the range of 7', and that is —128 = 100000004

equivalent to = modulo 2. —1 = 11111111,

- (That means that = — 2’ is a multiple of 2".) e Terminology: rightmost (units) bit is bit 0, 2s bit is bit 1. Hence,
changing bit n modifies value by 2.

Last modified: Mon Sep 27 12:09:51 2004 CS61B: Lecture #12 3 Last modified: Mon Sep 27 12:09:51 2004 CS61B: Lecture #12 4

Negative numbers

e Why this representation for -1?

1| 00000001,
+ —1| 11111111,
= 0/1]000000004

Only 8 bits in a byte, so bit 8 falls off, leaving O.

e The truncated bit is in the 2° place, so throwing it away gives an equal
number modulo 28, All bits to the left of it are likewise divisible by
28,

e On unsigned types (char), arithmetic is the same, but we choose to
represent only non-negative numbers modulo 26

1| 00000000000000015
+ 216 1| 1111111111111111,
= 216+ 0/1/00000000000000005

Last modified: Mon Sep 27 12:09:51 2004 CS61B: Lecture #12 5

Conversion

¢ In general Java will silently convert from one type to another if this
makes sense and no information is lost from value.

e Otherwise, cast explicitly, as in (byte) x.

e Hence, given
byte aByte; char aChar; short aShort; int anInt; long along;
// OK:

aShort = aByte; anInt = aByte; anInt = aShort; anInt = aChar;
along = anlnt;

// Not OK, might lose information:
anInt = along; aByte = anlInt; aChar = anInt; aShort = anlnt;
aShort = aChar; aChar = aShort; aChar = aByte;

// OK by special dispensation:
aByte = 13; // 13 is compile-time constant
aByte = 12+100 // 112 is compile-time constant

Last modified: Mon Sep 27 12:09:51 2004 CS61B: Lecture #12 6

Promotion

e Arithmetic operations (+,*, ...) promote operands as needed.
e Promotion is just implicit conversion.
e For integer operations,
- if any operand is long, promote both to long.
- otherwise promote both to int.
e So,

aByte + 3 == (int) aByte + 3 // Type int

along + 3 == along + (long) 3 // Type long

A’ + 2 == (int) A’ + 2 // Type int

aByte = aByte + 1 // ILLEGAL (why?)

e But fortunately,
aByte += 1; // Defined as aByte = (byte) (aByte+1)

e Common example:

// Assume aChar is an upper-case letter
char lowerCaseChar = (char) (’a’ + aChar - ’A’); // why cast?

Last modified: Mon Sep 27 12:09:51 2004 CS61B: Lecture #12 7

Bit twiddling

e Java (and C, C++) allow for handling integer types as sequences of
bits. No "conversion to bits" needed: they already are.

e Operations and their uses:
Mask Set Flip Flip all
00101100| 00101100| 00101100
& 10100111 || 10100111 " 10100111~ 10100111
00100100| 10101111 10001011 01011000

e Shifting:
Left Arithmetic Right Logical Right

10101101 << 3 10101101 >> 3 10101100 >>> 3
01101000 11110101 00010101

(-1) >>> 29?
<< n?
e Whatis: * s

T >> n?
(x >>> 3) & ((1<<B)-1)7?

Last modified: Mon Sep 27 12:09:51 2004 CS61B: Lecture #12 8

	CS61B Lecture #12: Integers
	Integer Types and Literals
	Modular Arithmetic
	Modular Arithmetic II
	Negative numbers
	Conversion
	Promotion
	Bit twiddling

