
CS61B Lecture #11: Some Loose Ends and Tricks

Readings: Chapters 4 and 5 of the Blue Reader for next week.

Today: Wrapping up some loose ends and leaving explicit material on
Java for now.

Question: Have you started Project #1 yet?

Last modified: Fri Sep 24 11:55:00 2004 CS61B: Lecture #11 1



Loose End #1: Importing

• Writing java.util.List every time you mean List or java.lang.regex.Pattern
every time you mean Pattern is annoying.

• The purpose of the import clause at the beginning of a source file is
to define abbreviations:

– import java.util.List;means “within this file, you can use List
as an abbreviation for java.util.List.

– import java.util.*; means “within this file, you can use any
class name in the package java.util without mentioning the pack-
age.”

• Importing does not grant any special access; it only allows abbrevi-
ation.

• In effect, your program always contains import java.lang.*;

Last modified: Fri Sep 24 11:55:00 2004 CS61B: Lecture #11 2



Loose End #2: Static importing

• One can easily get tired of writing System.out and Math.sqrt. Do
you really need to be reminded with each use that out is in the
java.lang.System package and that sqrt is in the Math package
(duh)?

• Both examples are of static members. New feature of Java allows
you to abbreviate such references:

– import static java.lang.System.out; means “within this file,
you can use out as an abbreviation for System.out.

– import static java.lang.System.*;means “within this file, you
can use any static member name in System without mentioning the
package.

• Again, this is only an abbreviation. No special access.

• Alas, you can’t do this for classes in the anonymous package.

Last modified: Fri Sep 24 11:55:00 2004 CS61B: Lecture #11 3



Loose End #3: Nesting Classes

• Sometimes, it makes sense to nest one class in another. The nested
class might

– be used only in the implementation of the other, or

– be conceptually “subservient” to the other

• Nesting such classes can help avoid name clashes or “pollution of the
name space” with names that will never be used anywhere else.

• Example: Polynomials can be thought of as sequences of terms.
Terms aren’t meaningful outside of Polynomials, so you might define
a class to represent a term inside the Polynomial class:

class Polynomial {

methods on polynomials

private Term[] terms;

private static class Term {

...

}

}

Last modified: Fri Sep 24 11:55:00 2004 CS61B: Lecture #11 4



Inner Classes

• Last slide showed a static nested class. Static nested classes are
just like any other, except that they can be private or protected,
and they can see private variables of the enclosing class.

• Non-static nested classes are called inner classes.

• Somewhat rare (and syntax is odd); used when each instance of the
nested class is created by and naturally associated with an instance
of the containing class, like Banks and Accounts:

Bank
account

account
Bank

account

account

class Bank { | Bank e = new Bank(...);

private void connectTo (...) {...} | Bank.Account p0 =

public class Account { | e.new Account (...);

public void call (int number) { | Bank.Account p1 =

Bank.this.connectTo (...); ... | e.new Account (...);

} // Bank.this means "the bank that |

} // created me" |

} |

Last modified: Fri Sep 24 11:55:00 2004 CS61B: Lecture #11 5



Loose End #4: Using an Overridden Method

• Suppose that you wish to add to the action defined by a superclass’s
method, rather than to completely override it.

• The overriding method can refer to overridden methods by using
the special prefix super.

• For example, you have a class with expensive functions, and you’d
like a memoizing version of the class.

class ComputeHard {

int cogitate (String x, int y) { ... }

...

}

class ComputeLazily extends ComputeHard {

int cogitate (String x, int y) {

if (already have answer for this x and y) return memoized result;
else

int result = super.cogitate (x, y);

memoize (save) result;
return result;

}

}

Last modified: Fri Sep 24 11:55:00 2004 CS61B: Lecture #11 6



Trick: Delegation and Wrappers

• Not always appropriate to use inheritance to extend something.

• Homework gives example of a TrReader, which contains another
Reader, to which it delegates the task of actually going out and
reading characters.

• Another example: an “interface monitor:”

interface Storage { | class Monitor implements Storage {

void put (Object x); | int gets, puts;

Object get (); | private Storage store;

} | Monitor (Storage x) { store = x; gets = puts = 0; }

| public void put (Object x) { puts += 1; store.put (x); }

| public Object get () { gets += 1; return store.get (); }

| }

• So now, you can instrument a program:

// ORIGINAL // INSTRUMENTED

Storage S = something; Monitor S = new Monitor (something);
f (S); f(S);

System.out.println (S.gets + " gets");

• Monitor is called a wrapper class.

Last modified: Fri Sep 24 11:55:00 2004 CS61B: Lecture #11 7



Loose End #5: instanceof

• It is possible to ask about the dynamic type of something:

void typeChecker (Reader r) {

if (r instanceof TrReader)

System.out.print ("Translated characters: ");

else

System.out.print ("Characters: ");

...

}

• However, this is seldom what you want to do. Why do this:

if (x instanceof StringReader)

read from (StringReader) x;

else if (x instanceof FileReader)

read from (FileReader) x;

...

when you can just call x.read()?!

• In general, use instance methods rather than instanceof.

Last modified: Fri Sep 24 11:55:00 2004 CS61B: Lecture #11 8


	CS61B Lecture #11: Some Loose Ends and Tricks
	Loose End #1: Importing
	Loose End #2: Static importing
	Loose End #3: Nesting Classes
	Inner Classes
	Loose End #4: Using an Overridden Method 
	Trick: Delegation and Wrappers
	Loose End #5: instanceof

