
CS61B Lecture #10

Reminders:

• Extra handouts in 283 Soda (and online).

• Please use bug-submit for submitting any programming problems you
have with homework and projects.

Readings: Chapters 4 and 5 of the Blue Reader.

Today’s Topics:

• Modularization facilities in Java.

Last modified: Wed Sep 22 10:50:13 2004 CS61B: Lecture #10 1

Package Mechanics

• Classes correspond to things being modeled (represented) in one’s
program.

• Packages are collections of “related” classes and other packages.

• Java puts standard libraries and packages in package java and javax.

• By default, a class resides in the anonymous package.

• To put it elsewhere, use a package declaration at start of file, as in

package database; or package ucb.util;

• Sun’s javac uses convention that class C in package P1.P2 goes in
subdirectory P1/P2 of current directory . . .

• . . . or of any other directory in the class path .

Last modified: Wed Sep 22 10:50:13 2004 CS61B: Lecture #10 2

Access Modifiers

• Access modifiers (private, public, protected) do not add anything
to the power of Java.

• Basically allow a programmer to declare what classes are supposed
to need to access (“know about”) what declarations.

• In Java, are also part of security—prevent programmers from ac-
cessing things that would “break” the runtime system.

• Accessibility always determined by static types.

– To determine correctness of writing x.f(), look at the definition
of f in the static type of x.

– Why? Because the rules are supposed to be enforced by the
compiler, which only knows static types of things (static types
don’t depend on what happens at execution time).

Last modified: Wed Sep 22 10:50:13 2004 CS61B: Lecture #10 3

The Access Rules

• Suppose we have two packages (not necessarily distinct) and two
distinct classes:

package P1;

public class C1 ... {

// A member named M,

A int M ...

void h (C1 x)

{ ... x.M ... } // OK.

}

package P2;

class C2 extends C3 {

void f (P1.C1 x) {... x.M ...} // OK?

// C4 a subtype of C2 (possibly C2 itself)

void g (C4 y) {... y.M ... } // OK?

}

• The access x.M is

– Legal if A is public;

– Legal if A is protected and P1 is P2;

– Legal if A is package private (default—no keyword) and P1 is P2;

– Illegal if A is private.

• Furthermore, if C3 is C1, then y.M is also legal under the conditions
above, or if A is protected (i.e., even if P1 is not the same as P2).

Last modified: Wed Sep 22 10:50:13 2004 CS61B: Lecture #10 4

What May be Controlled

• Classes and interfaces that are not nested may be public or package
private (we haven’t talked explicitly about nested types yet).

• Members—fields, methods, constructors, and (later) nested types—
may have any of the four access levels.

• May override a method only with one that has at least as permissive
an access level.

– Reason: avoid inconsistency:
package P1; | package P2;

public class C1 { | class C3 {

public int f () { ... } | void g (C2 y2) {

} | C1 y1 = y2

| y2.f (); // Bad???

public class C2 extends C1 { | y1.f (); // OK??!!?

// Actually a compiler error; pretend | }

// it’s not and see what happens | }

int f () { ... }

}

– That is, there’s no point in restricting C2.f, because access con-
trol depends on static types, and C1.f is public.

Last modified: Wed Sep 22 10:50:13 2004 CS61B: Lecture #10 5

Intentions of this Design

• public declarations represent specifications—what clients of a pack-
age are supposed to rely on.

• package private declarations are part of the implementation of a
class that must be known to other classes that assist in the imple-
mentation.

• protected declarations are part of the implementation that sub-
types may need, but that clients of the subtypes generally won’t.

• private declarations are part of the implementation of a class that
only that class needs.

Last modified: Wed Sep 22 10:50:13 2004 CS61B: Lecture #10 6

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK?

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // OK?

x.y1 = 3; // OK?

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // OK?

x.y1 = 3; // OK?

f1(); // OK?

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Wed Sep 22 10:50:13 2004 CS61B: Lecture #10 7

Access Control Static Only

“Public” and “private” don’t apply to dynamic types; it is possible to call
methods in objects of types you can’t name:

package utils; | package mystuff;

/** A Set of things. */ |

public interface Collector { | class User {

void add (Object x); | Collector c =

} | utils.Utils.concat ();

---------------------------- |

package utils; | c.add ("foo"); // OK

public class Utils { | ... c.value (); // ERROR

public static Collector concat () { | ((utils.Collector) c).value ()

return new Concatenator (); | // ERROR

} |

} ----------------------------------

/** NON-PUBLIC class that collects strings. */

class Concatenater implements Collector {

StringBuffer stuff = new StringBuffer ();

int n = 0;

public void add (Object x) { stuff.append (x); n += 1; }

public Object value () { return stuff.toString (); }

}
Last modified: Wed Sep 22 10:50:13 2004 CS61B: Lecture #10 8

	CS61B Lecture #10
	Package Mechanics
	Access Modifiers
	The Access Rules
	What May be Controlled
	Intentions of this Design
	Quick Quiz
	Access Control Static Only

