
CS61B, Fall 2004 HW #7 P. N. Hilfinger

Due: Fri., 5 November 2004 at midnight

Create a directory to hold your answers to this homework set. Copy files from $master/hw/hw7

into this directory. Put non-program answers into file hw7.txt. Use the command submit hw7

to submit your solutions to the problems below.

1. Assume that we have a heap that is stored with the largest element at the root. To print all ele-
ments of this heap that are greater than or equal to some key X, we could perform the removeFirst
operation repeatedly until we get something less than X, but this would presumably take worst-
case time Θ(k lg N), where N is the number of items in the heap and k is the number of items
greater than or equal to X. Furthermore, of course, it changes the heap. Show how to perform
this operation in Θ(k) time without modifying the heap. See ~cs61b/hw/hw7/HeapStuff.java

2. Suppose that we have an array, D, of N records. Without modifying this array, I would like
to compute an N -element array, P , containing a permutation of the integers 0 to N − 1 such that
the sequence D[P [0]], D[P [1]], . . . ,D[P [N −1]] is sorted stably. Give a general method that works
with any sorting algorithm (stable or not) and doesn’t require any additional storage (other than
that normally used by the sorting algorithm).

3. I am given a list of ranges of numbers, [xi, x
′

i
], each with 0 ≤ xi < x′

i
≤ 1. I want to know all

the ranges of values between 0 and 1 that are not covered by one of these ranges of numbers. So,
if the only input is [0.25, 0.5], then the output would be [0.0, 0.25] and [0.5, 1.0] (never mind the
end points). See the template ~cs61b/hw/hw7/Ranges.java.

4. [Goodrich&Tamassia] Given a sequence of n distinct integers, each one of which is in the
range [0, n2 − 1], describe an O(n) algorithm for sorting them.

5. Find an algorithm that runs in O(n log n) time for finding the number of inversions in a list
of n items. See the skeleton file ~cs61b/hw/hw7/Inversions.java. We will test this by giving it
a rather large list.

6. [Goodrich&Tamassia] Given two sequences of integers, A and B, find an algorithm that runs
in O(n log n) time (where n is the total number of integers in A and B) that determines, for a given
parameter m, whether there is an integer a in A and an integer b in B such that m = a + b. See
the skeleton file ~cs61b/hw/hw7/Sum.java. We will test this by giving it rather large sequences.
Feel free to use any of the methods in java.util.Arrays.

1

