
CS 61A Lecture Notes Week 1

Topic: Functional programming

Reading: Abelson & Sussman, Section 1.1 (pages 1–31)

Welcome to CS 61A, the world’s best computer science course, because we use the world’s best CS book as
the textbook. The only thing wrong with this course is that all the rest of the CS courses for the rest of
your life will seem a little disappointing (and repetitive).

Course overview comes next lecture; now we’re going to jump right in so you can get started exploring on
your own in the lab.

In 61A we program in Scheme, which is an interactive language. That means that instead of writing a great
big program and then cranking it through all at once, you can type in a single expression and find out its
value. For example:
3 self-evaluating
(+ 2 3) function notation
(sqrt 16) names don’t have to be punctuation
(+ (* 3 4) 5) composition of functions

+ functions are things in themselves
’+ quoting
’hello can quote any word
’(+ 2 3) can quote any expression
’(good morning) even non-expression sentences

(first 274) functions don’t have to be arithmetic
(butfirst 274) (abbreviation bf)
(first ’hello) works for non-numbers
(first hello) reminder about quoting
(first (bf ’hello)) composition of non-numeric functions
(+ (first 23) (last 45)) combining numeric and non-numeric

(define pi 3.14159) special form
pi value of a symbol
’pi contrast with quoted symbol
(+ pi 7) symbols work in larger expressions
(* pi pi)

(define (square x)
(* x x)) defining a function

(square 5) invoking the function
(square (+ 2 3)) composition with defined functions

Terminology: the formal parameter is the name of the argument (x); the actual argument expression is the
expression used in the invocation ((+ 2 3)); the actual argument value is the value of the argument in the
invocation (5). The argument’s name comes from the function’s definition; the argument’s value comes from
the invocation.
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Examples:

(define (plural wd)

(word wd ’s))

This simple plural works for lots of words (book, computer, elephant) but not for words that end in y (fly,
spy). So we improve it:

;;;;; In file cs61a/lectures/1.1/plural.scm

(define (plural wd)

(if (equal? (last wd) ’y)

(word (bl wd) ’ies)

(word wd ’s)))

If is a special form that only evaluates one of the alternatives.

Pig Latin: Move initial consonants to the end of the word and append “ay”; SCHEME becomes EMESCHAY.

;;;;; In file cs61a/lectures/1.1/pigl.scm

(define (pigl wd)

(if (pl-done? wd)

(word wd ’ay)

(pigl (word (bf wd) (first wd)))))

(define (pl-done? wd)

(vowel? (first wd)))

(define (vowel? letter)

(member? letter ’(a e i o u)))

Pigl introduces recursion—a function that invokes itself. More about how this works next week.

Another example: Remember how to play Buzz? You go around the circle counting, but if your number is
divisible by 7 or has a digit 7 you have to say “buzz” instead:

;;;;; In file cs61a/lectures/1.1/buzz.scm

(define (buzz n)

(cond ((equal? (remainder n 7) 0) ’buzz)

((member? 7 n) ’buzz)

(else n)))

This introduces the cond special form for multi-way choices.

Cond is the big exception to the rule about the meaning of parentheses; the clauses aren’t invocations.
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Course overview:

Computer science isn’t about computers (that’s electrical engineering) and it isn’t primarily a science (we
invent things more than we discover them).

CS is partly a form of engineering (concerned with building reliable, efficient mechanisms, but in software
instead of metal) and partly an art form (using programming as a medium for creative expression).

Programming is really easy, as long as you’re solving small problems. Any kid in junior high school can
write programs in BASIC, and not just exercises, either; kids do quite interesting and useful things with
computers. But BASIC doesn’t scale up; once the problem is so complicated that you can’t keep it all in
your head at once, you need help, in the form of more powerful ways of thinking about programming. (But in
this course we mostly use small examples, because we’d never get finished otherwise, so you have to imagine
how you think each technique would work out in a larger case.)

We deal with three big programming styles/approaches/paradigms:

• Functional programming (2 months)

• Object-oriented programming (1 month)

• Client-server programming (1 week)

• Logic programming (1 week)

The big idea of the course is abstraction: inventing languages that let us talk more nearly in a problem’s own
terms and less in terms of the computer’s mechanisms or capabilities. There is a hierarchy of abstraction:

Application programs

High-level language (Scheme)

Low-level language (C)

Machine language

Architecture (registers, memory, arithmetic unit, etc)

circuit elements (gates)

transistors

solid-state physics

quantum mechanics

In 61C we look at lower levels; all are important but we want to start at the highest level to get you thinking
right.

Style of work: Cooperative learning. No grading curve, so no need to compete. Homework is to learn
from; only tests are to test you. Don’t cheat; ask for help instead. (This is the first CS course; if you’re
tempted to cheat now, how are you planning to get through the harder ones?)

Functions.

• A function can have any number of arguments, including zero, but must have exactly one return value.
(Suppose you want two? You combine them into one, e.g., in a sentence.) It’s not a function unless you
always get the same answer for the same arguments.

• Why does that matter? If each little computation is independent of the past history of the overall
computation, then we can reorder the little computations. In particular, this helps cope with parallel
processors.

• The function definition provides a formal parameter (a name), and the function invocation provides an
actual argument (a value). These fit together like pieces of a jigsaw puzzle. Don’t write a “function” that

only works for one particular argument value!
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• Instead of a sequence of events, we have composition of functions, like f(g(x)) in high school algebra. We
can represent this visually with function machines and plumbing diagrams.

Recursion:

;;;;; In file cs61a/lectures/1.1/argue.scm

> (argue ’(i like spinach))

(i hate spinach)

> (argue ’(broccoli is awful))

(broccoli is great)

(define (argue s)

(if (empty? s)

’()

(se (opposite (first s))

(argue (bf s)))))

(define (opposite w)

(cond ((equal? w ’like) ’hate)

((equal? w ’hate) ’like)

((equal? w ’wonderful) ’terrible)

((equal? w ’terrible) ’wonderful)

((equal? w ’great) ’awful)

((equal? w ’awful) ’great)

((equal? w ’terrific) ’yucky)

((equal? w ’yucky) ’terrific)

(else w) ))

This computes a function (the opposite function) of each word in a sentence. It works by dividing the
problem for the whole sentence into two subproblems: an easy subproblem for the first word of the sentence,
and another subproblem for the rest of the sentence. This second subproblem is just like the original problem,
but for a smaller sentence.

We can take pigl from last lecture and use it to translate a whole sentence into Pig Latin:

(define (pigl-sent s)

(if (empty? s)

’()

(se (pigl (first s))

(pigl-sent (bf s)))))

The structure of pigl-sent is a lot like that of argue. This common pattern is called mapping a function
over a sentence.

Not all recursion follows this pattern. Each element of Pascal’s triangle is the sum of the two numbers above
it:

(define (pascal row col)

(cond ((= col 0) 1)

((= col row) 1)

(else (+ (pascal (- row 1) (- col 1))

(pascal (- row 1) col) ))))
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Normal vs. applicative order.

To illustrate this point we use a modified Scheme evaluator that lets us show the process of applicative or
normal order evaluation. We define functions using def instead of define. Then, we can evaluate expressions
using (applic (...)) for applicative order or (normal (...)) for normal order. (Never mind how this
modified evaluator itself works! Just take it on faith and concentrate on the results that it shows you.)

In the printed results, something like

(* 2 3) ==> 6

indicates the ultimate invocation of a primitive function. But

(f 5 9) ---->

(+ (g 5) 9)

indicates the substitution of actual arguments into the body of a function defined with def. (Of course,
whether actual argument values or actual argument expressions are substituted depends on whether you
used applic or normal, respectively.)

> (load "lectures/1.1/order.scm")

> (def (f a b) (+ (g a) b)) ; define a function

f

> (def (g x) (* 3 x)) ; another one

g

> (applic (f (+ 2 3) (- 15 6))) ; show applicative-order evaluation

(f (+ 2 3) (- 15 6))

(+ 2 3) ==> 5

(- 15 6) ==> 9

(f 5 9) ---->

(+ (g 5) 9)

(g 5) ---->

(* 3 5) ==> 15

(+ 15 9) ==> 24

24

> (normal (f (+ 2 3) (- 15 6))) ; show normal-order evaluation

(f (+ 2 3) (- 15 6)) ---->

(+ (g (+ 2 3)) (- 15 6))

(g (+ 2 3)) ---->

(* 3 (+ 2 3))

(+ 2 3) ==> 5

(* 3 5) ==> 15

(- 15 6) ==> 9

(+ 15 9) ==> 24 ; Same result, different process.

24

(continued on next page)
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> (def (zero x) (- x x)) ; This function should always return 0.

zero

> (applic (zero (random 10)))

(zero (random 10))

(random 10) ==> 5

(zero 5) ---->

(- 5 5) ==> 0

0 ; Applicative order does return 0.

> (normal (zero (random 10)))

(zero (random 10)) ---->

(- (random 10) (random 10))

(random 10) ==> 4

(random 10) ==> 8

(- 4 8) ==> -4

-4 ; Normal order doesn’t.

The rule is that if you’re doing functional programming, you get the same answer regardless of order of
evaluation. Why doesn’t this hold for (zero (random 10))? Because it’s not a function! Why not?

Efficiency: Try computing

(square (square (+ 2 3)))

in normal and applicative order. Applicative order is more efficient because it only adds 2 to 3 once, not
four times. (But later in the semester we’ll see that sometimes normal order is more efficient.)

Note that the reading for next week is section 1.3, skipping 1.2 for the time being.

272



• Unix Shell Programming

[This topic may be in week 1, week 4, or week 11 depending on the holidays each semester.]

Sometimes the best way to solve a programming problem is not to write a program at all, but instead to
glue together existing programs that solve the problem.

As an example, we’ll construct a spelling-checker program. It will take a text file as input, and will generate
a list of words that are in the file but not in the online dictionary.

For this demonstration I’ll use the file named summary as the text I want to spell-check.

We are given a file that contains several words per line, including things we don’t want to compare against
the dictionary, such as spaces and punctuation. Our job will be easier if we transform the input into a file
with exactly one word per line, with no spaces or punctuation (except that we’ll keep apostrophes, which
are part of words — contractions such as “we’ll” — rather than word delimiters).

tr -d ’.,;:"\!\[]()’ < summary > nopunct

Tr is a Unix utility program that translates one character into another. In this case, because of the -d

switch, we are asking it to delete from the input any periods, commas, semicolons, colons, exclamation
points, braces, and parentheses.

The single-quote (’) characters are used to tell the shell that the characters between them should not be
interpreted according to the shell’s usual syntax. For example, a semicolon in a shell command line separates
two distinct commands; the shell does one and then does the other. Here we want the semicolon to be passed
to the tr program just as if it were a letter of the alphabet.

When a program asks to read or print text, without specifying a particular source or destination, its input
comes from something called the standard input ; its output goes to the standard output. Ordinarily, the
standard input is the keyboard and the standard output is the screen. But you can redirect them using the
characters < and > in shell commands. In this case, we are asking the shell to connect tr’s standard input
to the file named summary, and to connect its standard output to a new file named nopunct.

Spacing characters in text files include the space character and the tab character. To simplify things, let’s
translate tabs to spaces.

tr ’ ’ ’ ’ < nopunct > notab

Between the first pair of single-quotes is a tab character. Tr will translate every tab in the file to a space.

We really want one word per line, so let’s translate spaces to newline characters.

tr ’ ’ ’\n’ < notab > oneword

The notation \n is a standard Unix notation for the newline character.

In English text, we capitalize the first word of each sentence. The words in the dictionary aren’t capitalized
(unless they’re proper nouns). So let’s translate capital letters to lower case:

tr ’[A-Z]’ ’[a-z]’ < oneword > lowcase

The notation [A-Z] means all the characters between the given extremes; it’s equivalent to

ABCDEFGHIJKLMNOPQRSTUVWXYZ

What tr does is convert every instance of the nth character of its first argument into the nth character of
the second argument. So we are asking it to convert A to a, B to b, and so on.
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Our plan is to compare each word of the text against the words in the dictionary. But we don’t have to read
every word of the dictionary for each word of the file; since the dictionary is sorted alphabetically, if we sort
the words in our text file, we can just make one pass through both files in parallel.

sort < lowcase > sorted

The sort program can take arguments to do sorting in many different ways; for example, you can ask it to
sort the lines of a file based on the third word of each line. But in this case, we want the simplest possible
sort: The “sort key” is the entire line, and we’re sorting in character-code order (which is the same as
alphabetical order since we eliminated capital letters).

Common words like “the” will occur many times in our text. There’s no need to spell-check the same word
repeatedly. Since we’ve sorted the file, all instances of the same word are next to each other in the file, so
we can ask Unix to eliminate consecutive equal lines:

uniq < sorted > nodup

Uniq has that name because in its output file every line is unique; it eliminates (consecutive) duplicates.

Now we’re ready to compare our file against the dictionary. This may seem like a special-purpose operation
for which we’ll finally have to write our own program, but in fact what we want to do is a common database
operation, combining entries from two different databases that have a certain element in common. Our
application is a trivial one in which each “database” entry has only one element, and we are just checking
for matches.

This combining of databases is called a join in the technical terminology of database programming. In our
case, what we want is not the join itself, but rather a report of those elements of one database (our text file)
that don’t occur in the other database (the online dictionary). This is what the -v1 switch means:

join -v1 nodup words > errors

That’s it! We now have a list of misspelled words that we can correct in Emacs. The user interface of this
spelling program isn’t fancy, but it gets the job done, and we didn’t have to work hard to get it.

It’s a little ugly that we’ve created all these intermediate files. But we don’t have to, because the shell
includes a “pipe” feature that lets you connect the standard output of one program to the standard input
of another. So we can do it this way:

tr -d ’.,;:"\!\[]()’ | tr ’ ’ ’ ’ | tr ’ ’ ’\n’ \

| tr ’[A-Z]’ ’[a-z]’ | sort | uniq | join -v1 - words

The backslash at the end of the first line is the shell’s continuation character, telling it that the same
command continues on the next line. The minus sign (-) as the second argument to join tells it to take
its first database input from its standard input rather than from a named file. (This is a standard Unix
convention for programs that read more than one input file.)

We can write a file named spell containing this command line, mark the file as executable (a program,
rather than data) with the command

chmod +x spell

and then instead of the sequence of commands I used earlier we can just say

spell < summary > errors

What we’ve done is use existing programs, glued together in a “scripting language” (the Unix shell), to
solve a new problem with very little effort. This is called “code re-use.” The huge collection of Unix utility
programs have been written with this technique in mind; that’s why almost all of them are what the Unix
designers call “filters,” meaning programs that take a text stream as input and produce a modified text
stream as output. Each filter doesn’t care where its input and output are; they can be files, or they can be
pipes connected to another filter program.
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CS 61A Lecture Notes Week 2

Topic: Higher-order procedures

Reading: Abelson & Sussman, Section 1.3

Note that we are skipping 1.2; we’ll get to it later. Because of this, never mind for now the stuff about
iterative versus recursive processes in 1.3 and in the exercises from that section.

We’re all done teaching you the syntax of Scheme; from now on it’s all big ideas!

This week’s big idea is function as object (that is, being able to manipulate functions as data) as opposed
to the more familiar view of function as process, in which there is a sharp distinction between program and
data.

The usual metaphor for function as process is a recipe. In that metaphor, the recipe tells you what to do,
but you can’t eat the recipe; the food ingredients are the “real things” on which the recipe operates. But
this week we take the position that a function is just as much a “real thing” as a number or text string is.

Compare the derivative in calculus: It’s a function whose domain and range are functions, not numbers.
The derivative function treats ordinary functions as things, not as processes. If an ordinary function is a
meat grinder (put numbers in the top and turn the handle) then the derivative is a “metal grinder” (put
meat-grinders in the top...).

• Using functions as arguments.

Arguments are used to generalize a pattern. For example, here is a pattern:

;;;;; In file cs61a/lectures/1.3/general.scm

(define pi 3.141592654)

(define (square-area r) (* r r))

(define (circle-area r) (* pi r r))

(define (sphere-area r) (* 4 pi r r))

(define (hexagon-area r) (* (sqrt 3) 1.5 r r))

In each of these procedures, we are taking the area of some geometric figure by multiplying some constant
times the square of a linear dimension (radius or side). Each is a function of one argument, the linear
dimension. We can generalize these four functions into a single function by adding an argument for the
shape:

;;;;; In file cs61a/lectures/1.3/general.scm

(define (area shape r) (* shape r r))

(define square 1)

(define circle pi)

(define sphere (* 4 pi))

(define hexagon (* (sqrt 3) 1.5))

We define names for shapes; each name represents a constant number that is multiplied by the square of the
radius.
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In the example about areas, we are generalizing a pattern by using a variable number instead of a constant
number. But we can also generalize a pattern in which it’s a function that we want to be able to vary:

;;;;; In file cs61a/lectures/1.3/general.scm

(define (sumsquare a b)

(if (> a b)

0

(+ (* a a) (sumsquare (+ a 1) b)) ))

(define (sumcube a b)

(if (> a b)

0

(+ (* a a a) (sumcube (+ a 1) b)) ))

Each of these functions computes the sum of a series. For example, (sumsquare 5 8) computes 52 + 62 +
72 + 82. The process of computing each individual term, and of adding the terms together, and of knowing
where to stop, are the same whether we are adding squares of numbers or cubes of numbers. The only
difference is in deciding which function of a to compute for each term. We can generalize this pattern by
making the function be an additional argument, just as the shape number was an additional argument to
the area function:

(define (sum fn a b)

(if (> a b)

0

(+ (fn a) (sum fn (+ a 1) b)) ))

Here is one more example of generalizing a pattern involving functions:

;;;;; In file cs61a/lectures/1.3/keep.scm

(define (evens nums)

(cond ((empty? nums) ’())

((= (remainder (first nums) 2) 0)

(se (first nums) (evens (bf nums))) )

(else (evens (bf nums))) ))

(define (ewords sent)

(cond ((empty? sent) ’())

((member? ’e (first sent))

(se (first sent) (ewords (bf sent))) )

(else (ewords (bf sent))) ))

(define (pronouns sent)

(cond ((empty? sent) ’())

((member? (first sent) ’(I me you he she it him her we us they them))

(se (first sent) (pronouns (bf sent))) )

(else (pronouns (bf sent))) ))

Each of these functions takes a sentence as its argument and returns a smaller sentence keeping only some
of the words in the original, according to a certain criterion: even numbers, words that contain the letter e,
or pronouns. We can generalize by writing a keep function that takes a predicate function as an additional
argument.

(define (keep pred sent)

(cond ((empty? sent) ’())

((pred (first sent)) (se (first sent) (keep pred (bf sent))) )

(else (keep pred (bf sent))) ))
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• Unnamed functions.

Suppose we want to compute
sin2 5 + sin2 6 + sin2 7 + sin2 8

We can use the generalized sum function this way:

> (define (sinsq x) (* (sin x) (sin x)))

> (sum sinsq 5 8)

2.408069916229755

But it seems a shame to have to define a named function sinsq that (let’s say) we’re only going to use this
once. We’d like to be able to represent the function itself as the argument to sum, rather than the function’s
name. We can do this using lambda:

> (sum (lambda (x) (* (sin x) (sin x))) 5 8)

2.408069916229755

Lambda is a special form; the formal parameter list obviously isn’t evaluated, but the body isn’t evaluated
when we see the lambda, either—only when we invoke the function can we evaluate its body.

• First-class data types.

A data type is considered first-class in a language if it can be

• the value of a variable (i.e., named)

• an argument to a function

• the return value from a function

• a member of an aggregate

In most languages, numbers are first-class; perhaps text strings (or individual text characters) are first-class;
but usually functions are not first-class. In Scheme they are. So far we’ve seen the first two properties; we’re
about to look at the third. (We haven’t really talked about aggregates yet, except for the special case of
sentences, but we’ll see in chapter 2 that functions can be elements of aggregates.) It’s one of the design
principles of Scheme that everything in the language should be first-class. Later, when we write a Scheme
interpreter in Scheme, we’ll see how convenient it is to be able to treat Scheme programs as data.

• Functions as return values.

(define (compose f g) (lambda (x) (f (g x))))

(define (twice f) (compose f f))

(define (make-adder n) (lambda (x) (+ x n)))

The derivative is a function whose domain and range are functions.

People who’ve programmed in Pascal might note that Pascal allows functions as arguments, but not functions
as return values. That’s because it makes the language harder to implement; you’ll learn more about this in
CS 164.
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• Let.

We write a function that returns a sentence containing the two roots of the quadratic equation ax2+bx+c = 0
using the formula

x =
−b ±

√
b2 − 4ac

2a

(We assume, to simplify this presentation, that the equation has two real roots; a more serious program
would check this.)

;;;;; In file cs61a/lectures/1.3/roots.scm

(define (roots a b c)

(se (/ (+ (- b) (sqrt (- (* b b) (* 4 a c)))) (* 2 a))

(/ (- (- b) (sqrt (- (* b b) (* 4 a c)))) (* 2 a)) ))

This works fine, but it’s inefficient that we have to compute the square root twice. We’d like to avoid that
by computing it once, giving it a name, and using that name twice in figuring out the two solutions. We
know how to give something a name by using it as an argument to a function:

;;;;; In file cs61a/lectures/1.3/roots.scm

(define (roots a b c)

(define (roots1 d)

(se (/ (+ (- b) d) (* 2 a))

(/ (- (- b) d) (* 2 a)) ))

(roots1 (sqrt (- (* b b) (* 4 a c)))) )

Roots1 is an internal helper function that takes the value of the square root in the formula as its argument
d. Roots calls roots1, which constructs the sentence of two numbers.

This does the job, but it’s awkward having to make up a name roots1 for this function that we’ll only use
once. As in the sum example earlier, we can use lambda to make an unnamed function:

;;;;; In file cs61a/lectures/1.3/roots.scm

(define (roots a b c)

((lambda (d)

(se (/ (+ (- b) d) (* 2 a))

(/ (- (- b) d) (* 2 a)) ))

(sqrt (- (* b b) (* 4 a c))) ))

This does exactly what we want. The trouble is, although it works fine for the computer, it’s a little hard for
human beings to read. The connection between the name d and the sqrt expression that provides its value
isn’t obvious from their positions here, and the order in which things are computed isn’t the top-to-bottom
order of the expression. Since this is something we often want to do, Scheme provides a more convenient
notation for it:

;;;;; In file cs61a/lectures/1.3/roots.scm

(define (roots a b c)

(let ((d (sqrt (- (* b b) (* 4 a c)))))

(se (/ (+ (- b) d) (* 2 a))

(/ (- (- b) d) (* 2 a)) )))

Now we have the name next to the value, and we have the value of d being computed above the place
where it’s used. But you should remember that let does not provide any new capabilities; it’s merely an
abbreviation for a lambda and an invocation of the unnamed function.
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The unnamed function implied by the let can have more than one argument:

;;;;; In file cs61a/lectures/1.3/roots.scm

(define (roots a b c)

(let ((d (sqrt (- (* b b) (* 4 a c))))

(-b (- b))

(2a (* 2 a)))

(se (/ (+ -b d) 2a)

(/ (- -b d) 2a) )))

Two cautions: (1) These are not long-term “assignment statements” such as you may remember from other
languages. The association between names and values only holds while we compute the body of the let.
(2) If you have more than one name-value pair, as in this last example, they are not computed in sequence!
Later ones can’t depend on earlier ones. They are all arguments to the same function; if you translate back
to the underlying lambda-and-application form you’ll understand this.
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CS 61A Lecture Notes Week 3

Topic: Recursion and iteration

Reading: Abelson & Sussman, Section 1.2 through 1.2.4 (pages 31–72)

This week is about efficiency. Mostly in 61A we don’t care about that; it becomes a focus of attention in
61B. In 61A we’re happy if you can get a program working at all, except for this week, when we introduce
ideas that will be more important to you later.

We want to know about the efficiency of algorithms, not of computer hardware. So instead of measuring
runtime in microseconds or whatever, we ask about the number of times some primitive (fixed-time) operation
is performed. Example:

;;;;; In file cs61a/lectures/1.2/growth.scm

(define (square x) (* x x))

(define (squares sent)

(if (empty? sent)

’()

(se (square (first sent))

(squares (bf sent)) )))

To estimate the efficiency of this algorithm, we can ask, “if the argument has N numbers in it, how many
multiplications do we perform?” The answer is that we do one multiplication for each number in the
argument, so we do N altogether. The amount of time needed should roughly double if the number of
numbers doubles.

Another example:

;;;;; In file cs61a/lectures/1.2/growth.scm

(define (sort sent)

(if (empty? sent)

’()

(insert (first sent)

(sort (bf sent)) )))

(define (insert num sent)

(cond ((empty? sent) (se num sent))

((< num (first sent)) (se num sent))

(else (se (first sent) (insert num (bf sent)))) ))

Here we are sorting a bunch of numbers by comparing them against each other. If there are N numbers,
how many comparisons do we do?

Well, if there are K numbers in the argument to insert, how many comparisons does it do? K of them.
How many times do we call insert? N times. But it’s a little tricky because each call to insert has a
different length sentence. The range is from 0 to N − 1. So the total number of comparisons is actually

0 + 1 + 2 + · · · + (N − 2) + (N − 1)

which turns out to be 1

2
N(N − 1). For large N , this is roughly equal to 1

2
N2. If the number of numbers

doubles, the time required should quadruple.

That constant factor of 1

2
isn’t really very important, since we don’t really know what we’re halving—that

is, we don’t know exactly how long it takes to do one comparison. If we want a very precise measure of
how many microseconds something will take, then we have to worry about the constant factors, but for an
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overall sense of the nature of the algorithm, what counts is the N2 part. If we double the size of the input
to a program, how does that affect the running time?

We use “big Theta” notation to express this sort of approximation. We say that the running time of the
sort function is Θ(N2) while the running time of the squares function is Θ(N). The formal definition is

f(x) = Θ(g(x)) ⇔ ∃k, N | ∀x > N, |f(x)| ≤ k · |g(x)|

What does all this mean? Basically that one function is always less than another function (e.g., the time
for your program to run is less than x2) except that we don’t care about constant factors (that’s what the
k means) and we don’t care about small values of x (that’s what the N means).

Why don’t we care about small values of x? Because for small inputs, your program will be fast enough
anyway. Let’s say one program is 1000 times faster than another, but one takes a millisecond and the other
takes a second. Big deal.

Why don’t we care about constant factors? Because for large inputs, the constant factor will be drowned
out by the order of growth—the exponent in the Θ(xi) notation. Here is an example taken from the book
Programming Pearls by Jon Bentley (Addison-Wesley, 1986). He ran two different programs to solve the
same problem. One was a fine-tuned program running on a Cray supercomputer, but using an Θ(N3)
algorithm. The other algorithm was run on a Radio Shack microcomputer, so its constant factor was several
million times bigger, but the algorithm was Θ(N). For small N the Cray was much faster, but for small N

both computers solved the problem in less than a minute. When N was large enough for the problem to
take a few minutes or longer, the Radio Shack computer’s algorithm was faster.

;;;;; In file cs61a/lectures/1.2/bentley

t1(N) = 3.0 N3 t2(N) = 19,500,000 N

N CRAY-1 Fortran TRS-80 Basic

10 3.0 microsec 200 millisec

100 3.0 millisec 2.0 sec

1000 3.0 sec 20 sec

10000 49 min 3.2 min

100000 35 days 32 min

1000000 95 yrs 5.4 hrs

Typically, the algorithms you run across can be grouped into four categories according to their order of
growth in time required. The first category is searching for a particular value out of a collection of values,
e.g., finding someone’s telephone number. The most obvious algorithm (just look through all the values until
you find the one you want) is Θ(N) time, but there are smarter algorithms that can work in Θ(log N) time
or even in Θ(1) (that is, constant) time. The second category is sorting a bunch of values into some standard
order. (Many other problems that are not explicitly about sorting turn out to require similar approaches.)
The obvious sorting algorithms are Θ(N2) and the clever ones are Θ(N log N). A third category includes
relatively obscure problems such as matrix multiplication, requiring Θ(N3) time. Then there is an enormous
jump to the really hard problems that require Θ(2N) or even Θ(N !) time; these problems are effectively not
solvable for values of N greater than one or two dozen. (Inventing faster computers won’t help; if the speed
of your computer doubles, that just adds 1 to the largest problem size you can handle!) Trying to find faster
algorithms for these intractable problems is a current hot research topic in computer science.
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• Iterative processes

So far we’ve been talking about time efficiency, but there is also memory (space) efficiency. This has gotten
less important as memory has gotten cheaper, but it’s still somewhat relevant because using a lot of memory
increases swapping (not everything fits at once) and so indirectly takes time.

The immediate issue for today is the difference between a linear recursive process and an iterative process.

;;;;; In file cs61a/lectures/1.2/count.scm

(define (count sent)

(if (empty? sent)

0

(+ 1 (count (bf sent))) ))

This function counts the number of words in a sentence. It takes Θ(N) time. It also requires Θ(N) space,
not counting the space for the sentence itself, because Scheme has to keep track of N pending computations
during the processing:

(count ’(i want to hold your hand))

(+ 1 (count ’(want to hold your hand)))

(+ 1 (+ 1 (count ’(to hold your hand))))

(+ 1 (+ 1 (+ 1 (count ’(hold your hand)))))

(+ 1 (+ 1 (+ 1 (+ 1 (count ’(your hand))))))

(+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (count ’(hand)))))))

(+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (count ’())))))))

(+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 0))))))

(+ 1 (+ 1 (+ 1 (+ 1 (+ 1 1)))))

(+ 1 (+ 1 (+ 1 (+ 1 2))))

(+ 1 (+ 1 (+ 1 3)))

(+ 1 (+ 1 4))

(+ 1 5)

6

When we get halfway through this chart and compute (count ’()), we aren’t finished with the entire
problem. We have to remember to add 1 to the result six times. Each of those remembered tasks requires
some space in memory until it’s finished.

Here is a more complicated program that does the same thing differently:

;;;;; In file cs61a/lectures/1.2/count.scm

(define (count sent)

(define (iter wds result)

(if (empty? wds)

result

(iter (bf wds) (+ result 1)) ))

(iter sent 0) )

This time, we don’t have to remember uncompleted tasks; when we reach the base case of the recursion, we
have the answer to the entire problem:

(count ’(i want to hold your hand))

(iter ’(i want to hold your hand) 0)

(iter ’(want to hold your hand) 1)

(iter ’(to hold your hand) 2)

(iter ’(hold your hand) 3)

(iter ’(your hand) 4)

(iter ’(hand) 5)

(iter ’() 6)

6
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When a process has this structure, Scheme does not need extra memory to remember all the unfinished tasks
during the computation.

This is really not a big deal. For the purposes of this course, you should generally use the simpler linear-
recursive structure and not try for the more complicated iterative structure; the efficiency saving is not worth
the increased complexity. The reason Abelson and Sussman make a fuss about it is that in other programming
languages any program that is recursive in form (i.e., in which a function invokes itself) will take (at least)
linear space even if it could theoretically be done iteratively. These other languages have special iterative
syntax (for, while, and so on) to avoid recursion. In Scheme you can use the function-calling mechanism
and still achieve an iterative process.

• More is less: non-obvious efficiency improvements.

The nth row of Pascal’s triangle contains the constant coefficients of the terms of (a + b)n. Each number
in Pascal’s triangle is the sum of the two numbers above it. So we can write a function to compute these
numbers:

;;;;; In file cs61a/lectures/1.2/pascal.scm

(define (pascal row col)

(cond ((= col 0) 1)

((= col row) 1)

(else (+ (pascal (- row 1) (- col 1))

(pascal (- row 1) col) ))))

This program is very simple, but it takes Θ(2n) time! [Try some examples. Row 18 is already getting slow.]

Instead we can write a more complicated program that, on the surface, does a lot more work because it
computes an entire row at a time instead of just the number we need:

;;;;; In file cs61a/lectures/1.2/pascal.scm

(define (new-pascal row col)

(nth col (pascal-row row)) )

(define (pascal-row row-num)

(define (iter in out)

(if (empty? (bf in))

out

(iter (bf in) (se (+ (first in) (first (bf in))) out)) ))

(define (next-row old-row num)

(if (= num 0)

old-row

(next-row (se 1 (iter old-row ’(1))) (- num 1)) ))

(next-row ’(1) row-num) )

This was harder to write, and seems to work harder, but it’s incredibly faster because it’s Θ(N2).

The reason is that the original version computed lots of entries repeatedly. The new version computes a few
unnecessary ones, but it only computes each entry once.

Moral: When it really matters, think hard about your algorithm instead of trying to fine-tune a few mi-
croseconds off the obvious algorithm.

Note: Programming project 1 is assigned this week.
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CS 61A Lecture Notes Week 4

Topic: Data abstraction, sequences

Reading: Abelson & Sussman, Sections 2.1 and 2.2.1 (pages 79–106)

Note: The first midterm is next week.

• Big ideas: data abstraction, abstraction barrier.

If we are dealing with some particular type of data, we want to talk about it in terms of its meaning, not in
terms of how it happens to be represented in the computer.

Example: Here is a function that computes the total point score of a hand of playing cards. (This simplified
function ignores the problem of cards whose rank-name isn’t a number.)

;;;;; In file cs61a/lectures/2.1/total.scm

(define (total hand)

(if (empty? hand)

0

(+ (butlast (last hand))

(total (butlast hand)) )))

> (total ’(3h 10c 4d))

17

This function calls butlast in two places. What do those two invocations mean? Compare it with a modified
version:

;;;;; In file cs61a/lectures/2.1/total.scm

(define (total hand)

(if (empty? hand)

0

(+ (rank (one-card hand))

(total (remaining-cards hand)) )))

(define rank butlast)

(define suit last)

(define one-card last)

(define remaining-cards butlast)

This is more work to type in, but the result is much more readable. If for some reason we wanted to modify
the program to add up the cards left to right instead of right to left, we’d have trouble editing the original
version because we wouldn’t know which butlast to change. In the new version it’s easy to keep track of
which function does what.

The auxiliary functions like rank are called selectors because they select one component of a multi-part
datum.
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Actually we’re violating the data abstraction when we type in a hand of cards as ’(3h 10c 4d) because
that assumes we know how the cards are represented—namely, as words combining the rank number with
a one-letter suit. If we want to be thorough about hiding the representation, we need constructor functions
as well as the selectors:

;;;;; In file cs61a/lectures/2.1/total.scm

(define (make-card rank suit)

(word rank (first suit)) )

(define make-hand se)

> (total (make-hand (make-card 3 ’heart)

(make-card 10 ’club)

(make-card 4 ’diamond) ))

17

Once we’re using data abstraction we can change the implementation of the data type without affecting the
programs that use that data type. This means we can change how we represent a card, for example, without
rewriting total:

;;;;; In file cs61a/lectures/2.1/total.scm

(define (make-card rank suit)

(cond ((equal? suit ’heart) rank)

((equal? suit ’spade) (+ rank 13))

((equal? suit ’diamond) (+ rank 26))

((equal? suit ’club) (+ rank 39))

(else (error "say what?")) ))

(define (rank card)

(remainder card 13))

(define (suit card)

(nth (quotient card 13) ’(heart spade diamond club)))

We have changed the internal representation so that a card is now just a number between 1 and 52 (why?
maybe we’re programming in FORTRAN) but we haven’t changed the behavior of the program at all. We
still call total the same way.

Data abstraction is a really good idea because it helps keep you from getting confused when you’re dealing
with lots of data types, but don’t get religious about it. For example, we have invented the sentence data type
for this course. We have provided symmetric selectors first and last, and symmetric selectors butfirst
and butlast. You can write programs using sentences without knowing how they’re implemented. But it
turns out that because of the way they are implemented, first and butfirst take Θ(1) time, while last

and butlast take Θ(N) time. If you know that, your programs will be faster.

• Pairs.

To represent data types that have component parts (like the rank and suit of a card), you have to have
some way to aggregate information. Many languages have the idea of an array that groups some number of
elements. In Lisp the most basic aggregation unit is the pair—two things combined to form a bigger thing.
If you want more than two parts you can hook a bunch of pairs together; we’ll discuss this more below.

The constructor for pairs is CONS; the selectors are CAR and CDR.
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The book uses pairs to represent many different abstract data types: rational numbers (numerator and
denominator), complex numbers (real and imaginary parts), points (x and y coordinates), intervals (low and
high bounds), and line segments (two endpoints). Notice that in the case of line segments we think of the
representation as one pair containing two points, not as three pairs containing four numbers. (That’s what
it means to respect a data abstraction.)

Note: What’s the difference between these two:

(define (make-rat num den) (cons num den))

(define make-rat cons)

They are both equally good ways to implement a constructor for an abstract data type. The second way
has a slight speed advantage (one fewer function call) but the first way has a debugging advantage because
you can trace make-rat without tracing all invocations of cons.

• Data aggregation doesn’t have to be primitive.

In most languages the data aggregation mechanism (the array or whatever) seems to be a necessary part of
the core language, not something you could implement as a user of the language. But if we have first-class
functions we can use a function to represent a pair:

;;;;; In file cs61a/lectures/2.1/cons.scm

(define (cons x y)

(lambda (which)

(cond ((equal? which ’car) x)

((equal? which ’cdr) y)

(else (error "Bad message to CONS" message)) )))

(define (car pair)

(pair ’car))

(define (cdr pair)

(pair ’cdr))

This is like the version in the book except that they use 0 and 1 as the messages because they haven’t
introduced quoted words yet. This version makes it a little clearer what the argument named which means.

The point is that we can satisfy ourselves that this version of cons, car, and cdr works in the sense that if
we construct a pair with this cons we can extract its two components with this car and cdr. If that’s true,
we don’t need to have pairs built into the language! All we need is lambda and we can implement the rest
ourselves. (It isn’t really done this way, in real life, for efficiency reasons, but it’s neat that it could be.)
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• Big idea: abstract data type sequence (or list).

We want to represent an ordered sequence of things. (They can be any kind of things.) We implement

sequences using pairs, with each car pointing to an element and each cdr pointing to the next pair.

What should the constructors and selectors be? The most obvious thing is to have a constructor list that
takes any number of arguments and returns a list of those arguments, and a selector nth that takes a number
and a list as arguments, returning the nth element of the list.

Scheme does provide those, but it often turns out to be more useful to select from a list differently, with a
selector for the first element and a selector for all the rest of the elements (i.e., a smaller list). This helps us
write recursive functions such as the mapping and filtering ones we saw for sentences earlier.

Since we are implementing lists using pairs, we ought to have specially-named constructors and selectors for
lists, just like for rational numbers:

(define adjoin cons)

(define first car)

(define rest cdr)

Many Lisp systems do in fact provide first and rest as synonyms for car and cdr, but the fact is that this
particular data abstraction is commonly violated; we just use the names car, cdr, and cons to talk about
lists.

This abstract data type has a special status in the Scheme interpreter itself, because lists are read and printed
using a special notation. If Scheme knew only about pairs, and not about lists, then when we construct the
list (1 2 3) it would print as (1 . (2 .(3 . ()))) instead.

• List constructors.

Sentences have a very simple structure, so there’s just one constructor for them. Lists are more complicated,
and have three constructors:

List is the simplest to understand. It takes any number of arguments, each of which can be anything, and
returns a list containing those arguments as its elements:

> (list ’(a list) ’word 87 #t)

((a list) word 87 #t)

This seems very straightforward, but in practice it’s not the most useful constructor, because it can be used
only when you know exactly how many elements you want in the list. Most list programming deals with
arbitrary sequences, which could be of any length. List is useful when you use a fixed-length list to represent
an abstract data type, such as a point in three-dimensional space:

(define (point x y z)

(list x y z))

Cons adds one new element at the front of an existing list:
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> (cons ’(new element) ’(the old list))

((new element) the old list)

(Of course, cons really just takes two arguments and makes a pair containing them, but if you’re using that
pair as the head of a list, then the effect of cons in terms of the list abstraction is to add one new element.)
This may seem too specific and arbitrary to be useful, but in fact cons is the most commonly used list
constructor, because adding one new element is exactly what you want to do in a recursive transformation
of a list:

(define (map fn seq)

(if (null? seq)

’()

(CONS (fn (car seq))

(map fn (cdr seq)))))

Append is used to combine two or more lists in a way that “flattens” some of the structure of the result: It
returns a list whose elements are the elements of the arguments, which must be lists:

> (append ’(one list) ’(and another list))

(one list and another list)

It’s most useful when combining results from multiple recursive calls, each of which returns a subset of the
overall answer; you want to take the union of those sets, and that’s what append does.

• Lists vs. sentences.

We started out the semester using an abstract data type called sentence that looks a lot like a list. What’s
the difference, and why did we do it that way?

Our goal was to allow you to create aggregates of words without having to think about the structure of their
internal representation (i.e., about pairs). We do this by deciding that the elements of a sentence must be
words (not sublists), and enforcing that by giving you the constructor sentence that creates only sentences.

Example: One of the homework problems this week asks you to reverse a list. You’ll see that this is a little
tricky using cons, car, and cdr as the problem asks, but it’s easy for sentences:

(define (reverse sent)

(if (empty? sent)

’()

(se (reverse (bf sent)) (first sent)) ))
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To give you a better idea about what a sentence is, here’s a version of the constructor function:

;;;;; In file cs61a/lectures/2.2/sentence.scm

(define (se a b)

(cond ((word? a) (se (list a) b))

((word? b) (se a (list b)))

(else (append a b)) ))

(define (word? x)

(or (symbol? x) (number? x)) )

Se is a lot like append, except that the latter behaves oddly if given words as arguments. Se can accept
words or sentences as arguments.

• Box and pointer diagrams.

Here are a few details that people sometimes get wrong about them:

1. An arrow can’t point to half of a pair. If an arrowhead touches a pair, it’s pointing to the entire pair,
and it doesn’t matter exactly where the arrowhead touches the rectangle. If you see something like

(define x (car y))

where y is a pair, the arrow for x should point to the thing that the car of y points to, not to the left half
of the y rectangle.

2. The direction of arrows (up, down, left, right) is irrelevant. You can draw them however you want to
make the arrangement of pairs neat. That’s why it’s crucial not to forget the arrowheads!

3. There must be a top-level arrow to show where the structure you’re representing begins.

How do you draw a diagram for a complicated list? Take this example:

((a b) c (d (e f)))

You begin by asking yourself how many elements the list has. In this case it has three elements: first (a b),
then c, then the rest. Therefore you should draw a three-pair backbone: three pairs with the cdr of one
pointing to the next one. (The final cdr is null.)

Only after you’ve drawn the backbone should you worry about making the cars of your three pairs point to
the three elements of the top-level list.
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• MapReduce

In the past, functional programming, and higher-order functions in particular, have been considered esoteric
and unimportant by most programmers. But the advent of highly parallel computation is changing that,
because functional programming has the very useful property that the different pieces of a program don’t
interfere with each other, so it doesn’t matter in what order they are invoked. Later this semester, when
we have more sophisticated functional mechanisms to work with, we’ll be examining one famous example
of functional programming at work: the MapReduce programming paradigm developed by Google that uses
higher-order functions to allow a programmer to process large amount of data in parallel on many computers.

Much of the computing done at Google consists of relatively simple algorithms applied to massive amounts of
data, such as the entire World Wide Web. It’s routine for them to use clusters consisting of many thousands
of processors, all running the same program, with a distributed filesystem that gives each processor local
access to part of the data.

In 2003 some very clever people at Google noticed that the majority of these computations could be viewed
as a map of some function over the data followed by an accumulate (they use the name reduce, which is
a synonym for this function) to collect the results. Although each program was conceptually simple, a lot
of programmer effort was required to manage the parallelism; every programmer had to worry about things
like how to recover from a processor failure (virtually certain to happen when a large computation uses
thousands of machines) during the computation. They wrote a library procedure named MapReduce that
basically takes two functions as arguments, a one-argument function for the map part and a two-argument
function for the accumulate part. (The actual implementation is more complicated, but this is the essence
of it.) Thus, only the implementors of MapReduce itself had to worry about the parallelism, and application
programmers just have to write the two function arguments.*

MapReduce is a little more complicated than just

(define (mapreduce mapper reducer base-case data) ; Nope.

(accumulate reducer base-case (map mapper data)))

because of the parallelism. The input data comes in pieces; several computers run the map part in parallel,
and each of them produces some output. These intermediate results are rearranged into groups, and each
computer does a reduce of part of the data. The final result isn’t one big list, but separate output files for
each reducing process.

To make this a little more specific, today we’ll see a toy version of the algorithm that just handles small
data lists in one processor.

Data pass through the program in the form of key-value pairs:

(define make-kv-pair cons)

(define kv-key car)

(define kv-value cdr)

A list of key-value pairs is called an association list or a-list for short. We’ll see a-lists in many contexts
other than MapReduce. Conceptually, the input to MapReduce is an a-list, although in practice there are
several a-lists, each on a different processor.

Any computation in MapReduce involves two function arguments: the mapper and the reducer. (Note: The
Google MapReduce paper in the course reader says “the map function” to mean the function that the user
writes, the one that’s applied to each datum; this usage is confusing since everyone else uses “map” to mean

* We are indebted to Google for funding both the development of software and curriculum for this piece of the
course and the cost of the cluster of parallel processors you’ll use in the lab later. This should not be taken
as an endorsement of Google’s contemptible business practices, in which their income depends on massive
violations of their users’ privacy.
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the higher-order function that controls the invocation of the user’s function, so we’re calling the latter the
mapper :

(map mappermappermapper data)

Similarly, we’ll use reduce to refer to the higher-order function, and reducer to mean the user’s accumulation
function.)

ACCUMULATEMAP

kv

kv

kv

kv

kv

kv

key
REDUCE

key

REDUCE

REDUCEkey

key

key

key

(mapreduce f1 f2 base dataname)

f1
f2

()

MAP

MAP

MAP

MAP

SORT

value
value
value

value
value

value

result

result

result

f1 f2

(accumulate f2 base (map f1 data))

The argument to the mapper is always one kv-pair. Keys are typically used to keep track of where the data
came from. For example, if the input consists of a bunch of Web pages, the keys might be their URLs.
Another example we’ll be using is Project Gutenberg, an online collection of public-domain books; there the
key would be the name of a book (more precisely, the filename of the file containing that book). In most
uses of a-lists, there will only be one kv-pair with a given key, but that’s not true here; for example, each
line of text in a book or Web page might be a datum, and every line in the input will have the same key.

The value returned by the mapper must be a list of kv-pairs. The reason it’s a list instead of a single kv-pair,
as you might expect, is twofold. First, a single input may be split into smaller pieces; for example, a line of
text might be mapped into a separate kv-pair for each word in the line. Second, the mapper might return
an empty list, if this particular kv-pair shouldn’t contribute to the result at all; thus, the mapper might also
be viewed as a filterer. The mapper is not required to use the same key in its output kv-pairs that it gets in
its input kv-pair.

Since map handles each datum independently of all the others, the fact that many maps are running in
parallel doesn’t affect the result; we can model the entire process with a single map invocation. That’s not
the case with the reduce part, because the data are being combined, so it matters which data end up on
which machine. This is where the keys are most important. Between the mapping and the reduction is an
intermediate step in which the kv-pairs are sorted based on the keys, and all pairs with the same key are
reduced together. Therefore, the reducer doesn’t need to look at keys at all; its two arguments are a value
and the result of the partial accumulation of values already done. In many cases, just as in the accumulations
we’ve seen earlier, the reducer will be a simple associative and commutative operation such as +.

The overall result is an a-list, in which each key occurs only once, and the value paired with that key is
the result of the reduce invocation that handled that key. The keys are guaranteed to be in order. (This
is the result of the 61A version of MapReduce; the real Google software has a more complicated interface
because each computer in the cluster collects its own reduce results, and there are many options for how the
reduction tasks are distributed among the processors. You’ll learn more details in 61B.) So in today’s single-
processor simulation, instead of talking about reduce we’ll use a higher order function called groupreduce

that takes a list of a-lists as argument, with each sublist having kv-pairs with the same key, does a separate
reduction for each sublist, and returns an a-list of the results. So a complete MapReduce operation works
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roughly like this:

(define (mapreduce mapper reducer base-case data) ; handwavy approximation

(groupreducegroupreducegroupreduce reducer base-case

(sort-into-bucketssort-into-bucketssort-into-buckets (mapmapmap mapper data))))

(define (groupreduce reducer base-case buckets)

(map (lambda (subset) (make-kv-pair

(kv-key (car subset))

(reduce reducer base-case (map kv-value subset))))

buckets))

As a first example, we’ll take some grades from various exams and add up the grades for each student. This
example doesn’t require map. Here’s the raw data:

(define mt1 ’((cs61a-xc . 27) (cs61a-ya . 40) (cs61a-xw . 35)

(cs61a-xd . 38) (cs61a-yb . 29) (cs61a-xf . 32)))

(define mt2 ’((cs61a-yc . 32) (cs61a-xc . 25) (cs61a-xb . 40)

(cs61a-xw . 27) (cs61a-yb . 30) (cs61a-ya . 40)))

(define mt3 ’((cs61a-xb . 32) (cs61a-xk . 34) (cs61a-yb . 30)

(cs61a-ya . 40) (cs61a-xc . 28) (cs61a-xf . 33)))

Each midterm in this toy problem corresponds to the output of a parallel map operation in a real problem.

First we combine these into one list, and use that as input to the sortintobuckets procedure:

> (sort-into-buckets (append mt1 mt2 mt3))

(((cs61a-xb . 40) (cs61a-xb . 32))

((cs61a-xc . 27) (cs61a-xc . 25) (cs61a-xc . 28))

((cs61a-xd . 38))

((cs61a-xf . 32) (cs61a-xf . 33))

((cs61a-xk . 34))

((cs61a-xw . 35) (cs61a-xw . 27))

((cs61a-ya . 40) (cs61a-ya . 40) (cs61a-ya . 40))

((cs61a-yb . 29) (cs61a-yb . 30) (cs61a-yb . 30))

((cs61a-yc . 32)))

In the real parallel context, instead of the append, each map process would sort its own results into the right
buckets, so that too would happen in parallel.

Now we can use groupreduce to add up the scores in each bucket separately:

> (groupreduce + 0 (sort-into-buckets (append mt1 mt2 mt3)))

((cs61a-xb . 72) (cs61a-xc . 80) (cs61a-xd . 38) (cs61a-xf . 65)

(cs61a-xk . 34) (cs61a-xw . 62) (cs61a-ya . 120) (cs61a-yb . 89)

(cs61a-yc . 32))

Note that the returned list has the keys in sorted order. This is a consequence of the sorting done by
sort-into-buckets, and also, in the real parallel mapreduce, a consequence of the order in which keys are
assigned to processors (the “partitioning function” discussed in the MapReduce paper).

Similarly, we could ask how many midterms each student took:

> (groupreduce (lambda (new old) (+ 1 old))(lambda (new old) (+ 1 old))(lambda (new old) (+ 1 old)) 0

(sort-into-buckets (append mt1 mt2 mt3)))

((cs61a-xb . 2) (cs61a-xc . 3) (cs61a-xd . 1) (cs61a-xf . 2) (cs61a-xk . 1)

(cs61a-xw . 2) (cs61a-ya . 3) (cs61a-yb . 3) (cs61a-yc . 1))

We could combine these in the obvious way to get the average score per student, for exams actually taken.
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Word frequency counting. A common problem is to look for commonly used words in a document. For
starters, we’ll count word frequencies in a single sentence. The first step is to turn the sentence into key-value
pairs in which the key is the word and the value is always 1:

> (map (lambda (wd) (list (make-kv-pair wd 1))) ’(cry baby cry))

((cry . 1) (baby . 1) (cry . 1))

If we group these by key and add the values, we’ll get the number of times each word appears.

(define (wordcounts1 sent)

(groupreduce + 0 (sort-into-buckets (map (lambda (wd) (make-kv-pair wd 1))

sent))))

> (wordcounts1 ’(cry baby cry))

((baby . 1) (cry . 2))

Now to try the same task with (simulated) files. When we use the real mapreduce, it’ll give us file data in
the form of a key-value pair whose key is the name of the file and whose value is a line from the file, in the
form of a sentence. For now, we’re going to simulate a file as a list whose car is the “filename” and whose
cdr is a list of sentences, representing the lines of the file. In other words, a file is a list whose first element
is the filename and whose remaining elements are the lines.

(define filename car)

(define lines cdr)

Here’s some data for us to play with:

(define file1 ’((please please me) (i saw her standing there) (misery)

(anna go to him) (chains) (boys) (ask me why)

(please please me) (love me do) (ps i love you)

(baby its you) (do you want to know a secret)))

(define file2 ’((with the beatles) (it wont be long) (all ive got to do)

(all my loving) (dont bother me) (little child)

(till there was you) (roll over beethoven) (hold me tight)

(you really got a hold on me) (i wanna be your man)

(not a second time)))

(define file3 ’((a hard days night) (a hard days night)

(i should have known better) (if i fell)

(im happy just to dance with you) (and i love her)

(tell me why) (cant buy me love) (any time at all)

(ill cry instead) (things we said today) (when i get home)

(you cant do that) (ill be back)))

We start with a little procedure to turn a “file” into an a-list in the form mapreduce will give us:

(define (file->linelist file)

(map (lambda (line) (make-kv-pair (filename file) line))

(lines file)))

> (file->linelist file1)

(((please please me) i saw her standing there)

((please please me) misery)

((please please me) anna go to him)

((please please me) chains)

((please please me) boys)

((please please me) ask me why)

((please please me) please please me)

293



((please please me) love me do)

((please please me) ps i love you)

((please please me) baby its you)

((please please me) do you want to know a secret))

Note that ((please please me) misery) is how Scheme prints the kv-pair ((please please me) . (misery)).

Now we modify our wordcounts1 procedure to accept such kv-pairs:

(define (wordcounts files)

(groupreduce + 0 (sort-into-buckets

(flatmap (lambda (kv-pair)

(map (lambda (wd) (make-kv-pair wd 1))

(kv-value kv-pair)))

files))))

> (wordcounts (append (file->linelist file1)

(file->linelist file2)

(file->linelist file3)))

((a . 4) (all . 3) (and . 1) (anna . 1) (any . 1) (ask . 1) (at . 1)

(baby . 1) (back . 1) (be . 3) (beethoven . 1) (better . 1) (bother . 1)

(boys . 1) (buy . 1) (cant . 2) (chains . 1) (child . 1) (cry . 1)

(dance . 1) (days . 1) (do . 4) (dont . 1) (fell . 1) (get . 1) (go . 1)

(got . 2) (happy . 1) (hard . 1) (have . 1) (her . 2) (him . 1) (hold . 2)

(home . 1) (i . 7) (if . 1) (ill . 2) (im . 1) (instead . 1) (it . 1)

(its . 1) (ive . 1) (just . 1) (know . 1) (known . 1) (little . 1)

(long . 1) (love . 4) (loving . 1) (man . 1) (me . 8) (misery . 1) (my . 1)

(night . 1) (not . 1) (on . 1) (over . 1) (please . 2) (ps . 1) (really . 1)

(roll . 1) (said . 1) (saw . 1) (second . 1) (secret . 1) (should . 1)

(standing . 1) (tell . 1) (that . 1) (there . 2) (things . 1) (tight . 1)

(till . 1) (time . 2) (to . 4) (today . 1) (wanna . 1) (want . 1) (was . 1)

(we . 1) (when . 1) (why . 2) (with . 1) (wont . 1) (you . 7) (your . 1))

(If you count yourself to check, remember that words in the album titles don’t count! They’re keys, not
values.)

Note the call to flatmap above. In a real mapreduce, each file would be mapped on a different processor,
and the results would be distributed to reduce processes in parallel. Here, the map over files gives us a list
of a-lists, one for each file, and we have to append them to form a single a-list. Flatmap flattens (appends)
the results from calling map.

We can postprocess the groupreduce output to get an overall reduction to a single value:

(define (mostfreq files)

(accumulate (lambda (new old)

(cond ((> (kv-value new) (kv-value (car old)))

(list new))

((= (kv-value new) (kv-value (car old)))

(cons new old)) ; In case of tie, remember both.

(else old)))

(list (make-kv-pair ’foo 0)) ; Starting value.

(groupreduce + 0 (sort-into-buckets

(flatmap (lambda (kv-pair)

(map (lambda (wd)

(make-kv-pair wd 1))

(kv-value kv-pair)))

files)))))

294



> (mostfreq (append (file->linelist file1)

(file->linelist file2)

(file->linelist file3)))

((me . 8))

(Second place is ”you” and ”I” with 7 appearances each, which would have made a two-element a-list as the
result.) If we had a truly enormous word list, we’d put it into a distributed file and use another mapreduce
to find the most frequent words of subsets of the list, and then find the most frequent word of those most
frequent words.

Searching for a pattern. Another task is to search through files for lines matching a pattern. A pattern

is a sentence in which the word * matches any set of zero or more words:

> (match? ’(* i * her *) ’(i saw her standing there))

#t

> (match? ’(* i * her *) ’(and i love her))

#t

> (match? ’(* i * her *) ’(ps i love you))

#f

Here’s how we look for lines in files that match a pattern:

(define (grep pattern files)

(groupreduce cons ’()

(sort-into-buckets

(flatmap (lambda (kv-pair)

(if (match? pattern (kv-value kv-pair))

(list kv-pair)

’()))

files))))

> (grep ’(* i * her *) (append (file->linelist file1)

(file->linelist file2)

(file->linelist file3)))

(((a hard days night) (and i love her))

((please please me) (i saw her standing there)))

Summary. The general pattern here is

(groupreduce reducer base-case

(sort-into-buckets

(map-or-flatmap mapper data)))

This corresponds to

(mapreduce mapper reducer base-case data)

in the truly parallel mapreduce exploration we’ll be doing later.
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CS 61A Lecture Notes Week 5

Topic: Hierarchical data/Scheme interpreter

Reading: Abelson & Sussman, Section 2.2.2–2.2.3, 2.3.1, 2.3.3

Midterm 1 is this week.

• Example: A Calculator Program

Later in the course we’ll be studying several variants of a Scheme interpreter written in Scheme. As a first,
small step in that direction, here is an interactive calculator that accepts arithmetic expressions in Scheme
notation, but without variables, without the ability to define procedures, and with no data types other than
numbers. Here’s how it works:

STk> (load "~cs61a/lib/calc.scm")

STk> (calc)

calc: (+ 2 3)

5

calc: (+ (* 2 3) (* 4 5))

26

calc: foo

Error: calc: bad expression: foo

The last example shows that there are no variables in this language.

The entire program consists of three procedures in 30 lines of code. You should find it easy to understand.
And yet these three procedures exactly parallel the core procedures in a real Scheme interpreter:

1. The read-eval-print loop: interact with the user.

2. Eval: (eval expression) returns the value of the expression.

3. Apply: (apply function argument-values) calls the function and returns the value it returns.

Here’s the read-eval-print loop (or REPL, pronounced “rep-uhl”):

(define (calc)

(display "calc: ")

(flush)

(print (calc-eval (read)))

(calc))

The calls to display and flush print the user prompt. (Flush is used when you want to print something
that doesn’t end with a newline character, but you want it to print right away. Ordinarily, most programs,
including STk, save up the characters you print until you finish a line, then send the entire line to the
operating system at once. Flush tells STk not to wait for the end of the line.)

The most important line is the (print (calc-eval (read))). Read is a Scheme primitive that reads a
datum from the keyboard. “Datum” here means a word, a list, or any other single Scheme value. In our case,
the things we’re reading are Scheme expressions, but read doesn’t know that; as far as read is concerned,
(+ 2 3) is just a list of three elements, not a request to add two numbers.

The fact that a Scheme expression is just a Scheme datum—a list—makes it very easy to write an interpreter.
This is why Scheme uses the (+ 2 3) notation for function calls rather than, say, +(2,3) as in the usual
mathematical notation for functions! Even a more complicated expression such as (+ (* 2 3) (* 4 5)) is
one single Scheme datum, a list, in which some of the elements are themselves lists.

What do we want to do with the thing read returns? We want to treat it as an expression in this Scheme-
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subset language and evaluate it. That’s the job of calc-eval. (We use the names calc-eval and calc-apply

in this program because STk has primitive procedures called eval and apply, and we don’t want to step on
those names. The STk procedures have jobs exactly analogous to the ones in calc, though; every interpreter
for any Lisp-family language has some form of eval and apply.)

Once we get the value from eval, what do we want to do with it? We want to show it to the user by printing
it to the display. That’s the job of print. So now you understand why it’s a “read-eval-print” loop! Read
an expression, evaluate it, and print its value.

Finally, the procedure ends with a recursive call to itself, so it loops forever; this is the “loop” part of the
REPL.

Notice that read and print are not functional programming; read returns a different value each time it’s
called, and print changes something in the world instead of just returning a value. The body of the REPL
has more than one expression; Scheme evaluates the expressions in order, and returns the value of the last
expression. (In this case, though, it never returns a value at all, since the last expression is a recursive call
and there’s no base case to end the recursion.) In functional programming, it doesn’t make sense to have
more than one expression in a procedure body, since a function can return only one value.

(It’s also worth noting, in passing, that the REPL is the only non-functional part of this program. Even
though we’re doing something interactive, functional programming techniques are still the best way to do
most of the work of the calculator program.)

The job of eval is to turn expressions into values. It’s very important to remember that those are two
different things. Some people lose midterm exam points by thinking that when you type ’foo into Scheme,
it prints out ’foo. Of course it really prints foo without the quotation mark. Foo is a possible Scheme
value, but ’foo really makes sense only as an expression. (Of course, as we’ve seen, every expression is also
a possible value; what expression would you type to Scheme to make it print ’foo?) What confuses people
is that some things in Scheme are both expressions and values; a number is a Scheme expression whose value
is the number itself. But most expressions have a value different from the expression itself.

Part of what makes one programming language different from another is what counts as an expression.
In Scheme, certain kinds of expressions have funny notation rules, such as the extra parentheses around
clauses in a cond expression. The notation used in a language is called its syntax. Eval is the part of a
Lisp interpreter that knows about syntax. Our simplified calculator language has only two kinds of syntax:
numbers, which are self-evaluating (i.e., the value is the number itself), and lists, which represent function
calls:

(define (calc-eval exp)

(cond ((number? exp) exp)

((list? exp) (calc-apply (car exp) (map calc-eval (cdr exp))))

(else (error "Calc: bad expression:" exp))))

In real Scheme, there are more kinds of self-evaluating expressions, such as Booleans (#t and #f) and
"strings in double quotes"; there are variables, which are expressions; and some lists are special forms
instead of procedure calls. So in a Scheme interpreter, eval is a little more complicated, but not that much
more.

By the way, notice that we’re talking about two different programming languages here. I’ve said that the
calculator language doesn’t have variables, and yet in calc-eval we’re using a variable named exp. This
isn’t a contradiction because calc-eval isn’t itself a program in calculator-language; it’s a program in STk,
which is a complete Scheme interpreter. The calculator language and Scheme are different enough so that you
probably won’t be confused about this, but I’m belaboring the point because later on we’ll see interpreters
for much more complete subsets of Scheme, and you can easily get confused about whether some expression
you’re looking at is part of the interpreter, and therefore an STk expression, or data given to the interpreter,
and therefore a mini-Scheme expression.
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The way calc-eval handles function calls is the only part of the calculator that is not the same as the
corresponding feature of real Scheme. That’s because in calculator language, numbers are the only data
type, and so in particular procedures aren’t data. In a real Scheme procedure call expression, the first
subexpression, the one whose value provides the procedure itself, has to be evaluated just as much as the
argument subexpressions. Often the first subexpression is just a variable name, such as + or cdr, but the
expression could be

((lambda (x) (+ x 5)) (* 2 3))

in which case the first subexpression is a special form, a lambda expression. But in calculator language, the
first sub-“expression” is always the name of the function, and there are only four possibilities: +, -, *, and
/. I put “expression” in quotes because these symbols are not expressions in calculator language. So the
expression in calc-eval that handles procedure calls is

(calc-apply (car exp) (map calc-eval (cdr exp)))

The first argument to calc-apply is the name of the function we want to call. The rest of the expression exp

consists of actual argument subexpressions, which we recursively evaluate by calling calc-eval for each of
them. (Remember that map is the list version of every; it calls calc-eval repeatedly, once for each element
of (cdr exp).) When we look at a more-nearly-real Scheme interpreter in another week, the corresponding
part of eval will look like this:

(apply (EVAL (car exp)) (map eval (cdr exp)))

Eval is the part of the interpreter that knows about the syntax of the language. By contrast, apply works
entirely in the world of values; there are no expressions at all in the arguments to apply. Our version of
apply has the four permitted operations built in:

(define (calc-apply fn args)

(cond ((eq? fn ’+) (accumulate + 0 args))

((eq? fn ’-) (cond ((null? args) (error "Calc: no args to -"))

((= (length args) 1) (- (car args)))

(else (- (car args) (accumulate + 0 (cdr args))))))

((eq? fn ’*) (accumulate * 1 args))

((eq? fn ’/) (cond ((null? args) (error "Calc: no args to /"))

((= (length args) 1) (/ (car args)))

(else (/ (car args) (accumulate * 1 (cdr args))))))

(else (error "Calc: bad operator:" fn))))

The associative operations can be done with a single call to the higher order accumulate function; the
non-associative ones have to deal with the special case of one argument separately. I’m not spending a lot
of time on the details because this isn’t how real Scheme handles function calls; the real apply takes the
actual procedure as its first argument, so it doesn’t have to have special knowledge of the operators built
into itself. Also, the real apply handles user-defined procedures as well as the ones built into the language.
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• Trees. Big idea: representing a hierarchy of information.

What are trees good for?

• Hierarchy: world, countries, states, cities.

• Ordering: binary search trees.

• Composition: arithmetic operations at branches, numbers at leaves.

The name “tree” comes from the branching structure of the pictures, like real trees in nature except that
they’re drawn with the root at the top and the leaves at the bottom.

A node is a point in the tree. In these pictures, each node includes a datum (the value shown at the node,
such as France or 26) but also includes the entire structure under that datum and connected to it, so the
France node includes all the French cities, such as Paris. Therefore, each node is itself a tree—the
terms “tree” and “node” mean the same thing! The reason we have two names for it is that we generally
use “tree” when we mean the entire structure that our program is manipulating, and “node” when we mean
just one piece of the overall structure. Therefore, another synonym for “node” is “subtree.”

The root node (or just the root) of a tree is the node at the top. Every tree has one root node. (A more
general structure in which nodes can be arranged more flexibly is called a graph; you’ll study graphs in 61B
and later courses.)

The children of a node are the nodes directly beneath it. For example, the children of the 26 node in the
picture are the 15 node and the 33 node.

A branch node is a node that has at least one child. A leaf node is a node that has no children. (The root
node is also a branch node, except in the trivial case of a one-node tree.)

• The TreeTreeTree abstract data type

Lisp has one built-in way to represent sequences, but there is no official way to represent trees. Why not?

• Branch nodes may or may not have data.
• Binary vs. n-way trees.
• Order of siblings may or may not matter.
• Can tree be empty?

We’ll get back to some of these variations later, but first we’ll consider a commonly used version of trees, in
which every tree has at least one node, every node has a datum, and nodes can have any number of children.
Here are the constructor and selectors:

(make-tree datum children)

(datum node)

(children node)

The selector children should return a list of trees, the children of the node. These children are themselves
trees. There is a name for a list of trees: a forest. It’s very important to remember that Tree and Forest are
two different data types! A forest is just a sequence, although its elements are required to be trees, and so
we can manipulate forests using the standard procedures for sequences (cons, car, cdr, etc.); a tree is not

a sequence, and should be manipulated only with the tree constructor and selectors.

A leaf node is one with no children, so its children list is empty:

(define (leaf? node)

(null? (children node)) )
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This definition of leaf? should work no matter how we represent the ADT.

The straightforward implementation is

;;;;; In file cs61a/lectures/2.2/tree1.scm

(define make-tree cons)

(define datum car)

(define children cdr)

• Mapping over trees

One thing we might want to do with a tree is create another tree, with the same shape as the original, but
with each datum replaced by some function of the original. This is the tree equivalent of map for lists.

;;;;; In file cs61a/lectures/2.2/tree1.scm

(define (treemap fn tree)

(make-tree (fn (datum tree))

(map (lambda (t) (treemap fn t))

(children tree) )))

This is a remarkably simple and elegant procedure, especially considering the versatility of the data structures
it can handle (trees of many different sizes and shapes). It’s one of the more beautiful things you’ll see in
the course, so spend some time appreciating it.

Every tree node consists of a datum and some children. In the new tree, the datum corresponding to this
node should be the result of applying fn to the datum of this node in the original tree. What about the
children of the new node? There should be the same number of children as there are in the original node,
and each new child should be the result of calling treemap on an original child. Since a forest is just a list,
we can use map (not treemap!) to generate the new children.

• Mutual recursion

Pay attention to the strange sort of recursion in this procedure. Treemap does not actually call itself!
Treemap calls map, giving it a function that in turn calls treemap. The result is that each call to treemap

may give rise to any number of recursive calls, via map: one call for every child of this node.

This pattern (procedure A invokes procedure B, which invokes procedure A) is called mutual recursion. We
can rewrite treemap without using map, to make the mutual recursion more visible:

;;;;; In file cs61a/lectures/2.2/tree11.scm

(define (treemap fn tree)

(make-tree (fn (datum tree))

(forest-map fn (children tree))))

(define (forest-map fn forest)

(if (null? forest)

’()

(cons (treemap fn (car forest))

(forest-map fn (cdr forest)))))

Forest-map is a helper function that takes a forest, not a tree, as argument. Treemap calls forest-map,
which calls treemap.
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Mutual recursion is what makes it possible to explore the two-dimensional tree data structure fully. In
particular, note that reaching the base case in forest-map does not mean that the entire tree has been
visited! It means merely that one group of sibling nodes has been visited (a “horizontal” base case), or that
a node has no children (a “vertical” base case). The entire tree has been seen when every child of the root
node has been completed.

Note that we use cons, car, and cdr when manipulating a forest, but we use make-tree, datum, and
children when manipulating a tree. Some students make the mistake of thinking that data abstraction
means “always say datum instead of car”! But that defeats the purpose of using different selectors and
constructors for different data types.

• Deep lists

Trees are our first two-dimensional data structure. But there’s a sense in which any list that has lists as
elements is also two-dimensional, and can be viewed as a kind of tree. We’ll use the name deep lists for lists
that contain lists. For example, the list

[[john lennon] [paul mccartney] [george harrison] [ringo starr]]

is probably best understood as a sequence of sentences, but instead we can draw a picture of it as a sort of
tree:

Don’t be confused; this is not an example of the Tree abstract data type we’ve just developed. In this picture,
for example, only the “leaf nodes” contain data, namely words. We didn’t make this list with make-tree,
and it wouldn’t make sense to examine it with datum or children.

But we can still use the ideas of tree manipulation if we’d like to do something for every word in the list.
Compare the following procedure with the first version of treemap above:

;;;;; In file cs61a/lectures/2.2/tree22.scm

(define (deep-map fn lol)

(if (list? lol)

(map (lambda (element) (deep-map fn element))

lol)

(fn lol)))

The formal parameter lol stands for “list of lists.” This procedure includes the two main tasks of treemap:
applying the function fn to one datum, and using map to make a recursive call for each child.

But treemap applies to the Tree abstract data type, in which every node has both a datum and children, so
treemap carries out both tasks for each node. In a deep list, by contrast, the “branch nodes” have children
but no datum, whereas the “leaf nodes” have a datum but no children. That’s why deep-map chooses only
one of the two tasks, using if to distinguish branches from leaves.

Note: SICP does not define a Tree abstract data type; they use the term “tree” to describe what I’m calling
a deep list. So they use the name tree-map in Exercise 2.31, page 113, which asks you to write what I’ve
called deep-map. (Since I’ve done it here, you should do the exercise without using map.) SICP does define
an abstract data type for binary trees, in which each node can have a left-branch and/or a right-branch,
rather than having any number of children.
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• Car/cdr recursion

Consider the deep list ((a b) (c d)). Ordinarily we would draw its box and pointer diagram with a
horizontal spine at the top and the sublists beneath the spine:

But imagine that we grab the first pair of this structure and “shake” it so that the pairs fall down as far as
they can. We’d end up with this diagram:

Note that these two diagrams represent the same list! They have the same pairs, with the same links from
one pair to another. It’s just the position of the pairs on the page that’s different. But in this new picture,
the structure looks a lot like a binary tree, in which the branch nodes are pairs and the leaf nodes are atoms
(non-pairs). The “left branch” of each pair is its car, and the “right branch” is its cdr. With this metaphor,
we can rewrite deep-map to look more like a binary tree program:

;;;;; In file cs61a/lectures/2.2/tree3.scm

(define (deep-map fn xmas)

(cond ((null? xmas) ’())

((pair? xmas)

(cons (deep-map fn (car xmas))

(deep-map fn (cdr xmas))))

(else (fn xmas))))

(The formal parameter xmas reflects the fact that the picture looks kind of like a Christmas tree.)

This procedure strongly violates data abstraction! Ordinarily when dealing with lists, we write programs
that treat the car and the cdr differently, reflecting the fact that the car of a pair is a list element, whereas
the cdr is a sublist. But here we treat the car and the cdr identically. One advantage of this approach is
that it works even for improper lists:

> (deep-map square ’((3 . 4) (5 6))

((9 . 16) (25 36))
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• Tree recursion

Compare the car/cdr version of deep-map with ordinary map:

(define (map fn seq)

(if (null? seq)

’()

(cons (fn (car seq))

(map fn (cdr seq)))))

Each non-base-case invocation of map gives rise to one recursive call, to handle the cdr of the sequence. The
car, an element of the list, is not handled recursively.

By contrast, in deep-map there are two recursive calls, one for the car and one for the cdr. This is what
makes the difference between a sequential, one-dimensional process and the two-dimensional process used
for deep lists and for the Tree abstraction.

A procedure in which each invocation makes more than one recursive call is given the name tree recursion

because of the relationship between this pattern and tree structures. It’s tree recursion only if each call
(other than a base case) gives rise to two or more recursive calls; it’s not good enough to have two recursive
calls of which only one is chosen each time, as in the following non-tree-recursive procedure:

(define (filter pred seq)

(cond ((null? seq) ’())

((pred (car seq)) (cons (car seq) (filter pred (cdr seq))))

(else (filter pred (cdr seq)))))

There are two recursive calls to filter, but only one of them is actually carried out each time, so this is a
sequential recursion, not a tree recursion.

A program can be tree recursive even if there is no actual tree-like data structure used, as in the Fibonacci
number function:

(define (fib n)

(if (< n 2)

1

(+ (fib (- n 1)) (fib (- n 2)))))

This procedure just handles numbers, not trees, but each non-base-case call adds the results of two recursive
calls, so it’s a tree recursive program.

• Tree traversal

Many problems involve visiting each node of a tree to look for or otherwise process some information there.
Maybe we’re looking for a particular node, maybe we’re adding up all the values at all the nodes, etc. There
is one obvious order in which to traverse a sequence (left to right), but many ways in which we can traverse
a tree.

In the following examples, we “visit” each node by printing the datum at that node. If you apply these
procedures to actual trees, you can see the order in which the nodes are visited.

Depth-first traversal: Look at a given node’s children before its siblings.

;;;;; In file cs61a/lectures/2.2/search.scm

(define (depth-first-search tree)

(print (datum tree))

(for-each depth-first-search (children tree)))

This is the easiest way, because the program’s structure follows the data structure; each child is traversed
in its entirety (that is, including grandchildren, etc.) before looking at the next child.
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Breadth-first traversal: Look at the siblings before the children.

What we want to do is take horizontal slices of the tree. First we look at the root node, then we look at the
children of the root, then the grandchildren, and so on. The program is a little more complicated because
the order in which we want to visit nodes isn’t the order in which they’re connected together.

To solve this, we use an extra data structure, called a queue, which is just an ordered list of tasks to be
carried out. Each “task” is a node to visit, and a node is a tree, so a list of nodes is just a forest. The
iterative helper procedure takes the first task in the queue (the car), visits that node, and adds its children
at the end of the queue (using append).

;;;;; In file cs61a/lectures/2.2/search.scm

(define (breadth-first-search tree)

(bfs-iter (list tree)))

(define (bfs-iter queue)

(if (null? queue)

’done

(let ((task (car queue)))

(print (datum task))

(bfs-iter (append (cdr queue) (children task))))))

Why would we use this more complicated technique? For example, in some situations the same value might
appear as a datum more than once in the tree, and we want to find the shortest path from the root node to
a node containing that datum. To do that, we have to look at nodes near the root before looking at nodes
far away from the root.

Another example is a game-strategy program that generates a tree of moves. The root node is the initial
board position; each child is the result of a legal move I can make; each child of a child is the result of a legal
move for my opponent, and so on. For a complicated game, such as chess, the move tree is much too large to
generate in its entirety. So we use a breadth-first technique to generate the move tree up to a certain depth
(say, ten moves), then we look for desirable board positions at that depth. (If we used a depth-first program,
we’d follow one path all the way to the end of the game before starting to consider a different possible first
move.)

For binary trees, within the general category of depth-first traversals, there are three possible variants:

Preorder: Look at a node before its children.

;;;;; In file cs61a/lectures/2.2/print.scm

(define (pre-order tree)

(cond ((null? tree) ’())

(else (print (entry tree))

(pre-order (left-branch tree))

(pre-order (right-branch tree)) )))

Inorder: Look at the left child, then the node, then the right child.

;;;;; In file cs61a/lectures/2.2/print.scm

(define (in-order tree)

(cond ((null? tree) ’())

(else (in-order (left-branch tree))

(print (entry tree))

(in-order (right-branch tree)) )))
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Postorder: Look at the children before the node.

;;;;; In file cs61a/lectures/2.2/print.scm

(define (post-order tree)

(cond ((null? tree) ’())

(else (post-order (left-branch tree))

(post-order (right-branch tree))

(print (entry tree)) )))

For a tree of arithmetic operations, preorder traversal looks like Lisp; inorder traversal looks like conventional
arithmetic notation; and postorder traversal is the HP calculator “reverse Polish notation.”

• Path finding

As an example of a somewhat more complicated tree program, suppose we want to look up a place (e.g., a
city) in the world tree, and find the path from the root node to that place:

> (find-place ’berkeley world-tree)

(world (united states) california berkeley)

If a place isn’t found, find-place will return the empty list.

To find a place within some tree, first we see if the place is the datum of the root node. If so, the answer
is a one-element list containing just the place. Otherwise, we look at each child of the root, and see if we
can find the place within that child. If so, the path within the complete tree is the path within the child,
but with the root datum added at the front of the path. For example, the path to Berkeley within the USA
subtree is

((united states) california berkeley)

so we put world in front of that.

Broadly speaking, this program has the same mutually recursive tree/forest structure as the other examples
we’ve seen, but one important difference is that once we’ve found the place we’re looking for, there’s no need
to visit other subtrees. Therefore, we don’t want to use map or anything equivalent to handle the children
of a node; we want to check the first child, see if we’ve found a path, and only if we haven’t found it should
we go on to the second child (if any). This is the reason for the let in find-forest.

;;;;; In file cs61a/lectures/2.2/world.scm

(define (find-place place tree)

(if (eq? place (datum tree))

(cons (datum tree) ’())

(let ((try (find-forest place (children tree))))

(if (not (null? try))

(cons (datum tree) try)

’()))))

(define (find-forest place forest)

(if (null? forest)

’()

(let ((try (find-place place (car forest))))

(if (not (null? try))

try

(find-forest place (cdr forest))))))

(Note: In 61B we come back to trees in more depth, including the study of balanced trees, i.e., using special
techniques to make sure a search tree has about as much stuff on the left as on the right.)
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• The Scheme-1 interpreter

[This topic may be in week 5 or in week 6 depending on the holiday schedule.]

We’re going to investigate a Scheme interpreter written in Scheme. SICP has a rather large and detailed
Scheme interpreter in Chapter 4, which we’ll get to near the end of the semester. But students often find
that program intimidating, so we’re going to work up to it with a series of three smaller versions that leave
out some details and some of the features of real Scheme. This week we’ll use the Scheme-1 interpreter.

We weren’t ready for this investigation until we had the idea of lists that contain sublists, because that’s
what a Scheme program is – a list. That’s the point of all those parentheses; the Scheme language can look
at a Scheme program as data, rather than as something different from data.

Here’s how we use the interpreter:

STk> (load "~cs61a/lib/scheme1.scm")

STk> (scheme-1)

Scheme-1: (+ 2 3)

5

Scheme-1: ((lambda (x) (* x 3)) 4)

12

To leave Scheme-1 and return to the STk prompt, just enter an illegal expression, such as ().

Why bother? What good is an interpreter for Scheme that we can’t use unless we already have another
interpreter for Scheme?

• It helps you understand evaluation models.

• It lets us experiment with modifications to Scheme (new features).

• Even real Scheme interpreters are largely written in Scheme.

• It illustrates a big idea: universality.

This week’s interpreter implements the substitution model of evaluation that we learned in Chapter 1 of SICP.
In Chapter 3, we’ll get to a more complicated but more realistic evaluation model, called the environment

model.

Universality means we can write one program that’s equivalent to all other programs. We’ll talk more about
this when we see SICP’s full Scheme interpreter in Chapter 4. This week’s interpreter, although universal in
principle, doesn’t make the point clearly because it’s quite difficult to write serious programs in it, mainly
because it lacks define.

Our Scheme interpreter leaves out many of the important components of a real one. It gets away with this
by taking advantage of the capabilities of the underlying Scheme. Specifically, we don’t deal with storage
allocation, tail recursion elimination, or implementing any of the Scheme primitives. All we do deal with is
the evaluation of expressions. That turns out to be quite a lot in itself, and pretty interesting.

306



Here is a one-screenful version of a Scheme interpreter, using the substitution model, with most of the details
left out:

;;;;; In file cs61a/lectures/2.2/tiny.scm

(define (scheme)

(display "> ")

(print (eval (read)))

(scheme) )

(define (eval exp)

(cond ((self-evaluating? exp) exp)

((symbol? exp) (look-up-global-value exp))

((special-form? exp) (do-special-form exp))

(else (apply (eval (car exp))

(map eval (cdr exp)) ))))

(define (apply proc args)

(if (primitive? proc)

(do-magic proc args)

(eval (substitute (body proc) (formals proc) args))))

Although the versions we can actually run are bigger, this really does capture the essential structure of
every Lisp interpreter, namely, a mutual recursion between eval (evaluate an expression) and apply (apply
a function to arguments). To evaluate a procedure call means to evaluate the subexpressions recursively,
then apply the car (a function) to the cdr (the arguments). To apply a function to arguments means to
evaluate the body of the function with the argument values in place of the formal parameters.

The substitute procedure is essentially the substitute2 that you wrote in last week’s homework, except
that it has to be a little more complicated to avoid substituting for quoted symbols and for the formal
parameters of a lambda inside the body.

What’s left out? Primitives, special forms, and a lot of details.

The Scheme-1 interpreter has only three special forms: quote, if, and lambda. In particular, it doesn’t
have define, so there are no global variables, and we can’t give procedures global names. If we need a name
for a procedure, we have to use it as an argument to another procedure. In particular, if we want to write
recursive procedures we have to use a trick that was an extra-for-experts in week 2:

Scheme-1: ((lambda (n)

((lambda (f) (f f n)) ; the "Y combinator"

(lambda (fact n)

(if (= n 0)

1

(* n (fact fact (- n 1))) )) ))

5)

120
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CS 61A Lecture Notes Week 6

Topic: Generic operators

Reading: Abelson & Sussman, Sections 2.4 through 2.5.2 (pages 169–200)

The overall problem we’re addressing this week is to control the complexity of large systems with many
small procedures that handle several types of data. We are building toward the idea of object-oriented

programming, which many people see as the ultimate solution to this problem, and which we discuss for two
weeks starting next week.

Big ideas:

• tagged data
• data-directed programming
• message passing

The first problem is keeping track of types of data. If we see a pair whose car is 3 and whose cdr is 4, does
that represent 3

4
or does it represent 3 + 4i?

The solution is tagged data: Each datum carries around its own type information. In effect we do (cons

’rational (cons 3 4)) for the rational number 3

4
, although of course we use an ADT.

Just to get away from the arithmetic examples in the text, we’ll use another example about geometric shapes.
Our data types will be squares and circles; our operations will be area and perimeter.

We want to be able to say, e.g., (area circle3) to get the area of a particular (previously defined) circle.
To make this work, the function area has to be able to tell which type of shape it’s seeing. We accomplish
this by attaching a type tag to each shape:

;;;;; In file cs61a/lectures/2.4/geom.scm

(define pi 3.141592654)

(define (make-square side)

(attach-tag ’square side))

(define (make-circle radius)

(attach-tag ’circle radius))

(define (area shape)

(cond ((eq? (type-tag shape) ’square)

(* (contents shape) (contents shape)))

((eq? (type-tag shape) ’circle)

(* pi (contents shape) (contents shape)))

(else (error "Unknown shape -- AREA"))))

(define (perimeter shape)

(cond ((eq? (type-tag shape) ’square)

(* 4 (contents shape)))

((eq? (type-tag shape) ’circle)

(* 2 pi (contents shape)))

(else (error "Unknown shape -- PERIMETER"))))

;; some sample data

(define square5 (make-square 5))

(define circle3 (make-circle 3))
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• Orthogonality of types and operators.

The next problem to deal with is the proliferation of functions because you want to be able to apply every
operation to every type. In our example, with two types and two operations we need four algorithms.

What happens when we invent a new type? If we write our program in the conventional (i.e., old-fashioned)
style as above, it’s not enough to add new functions; we have to modify all the operator functions like area

to know about the new type. We’ll look at two different approaches to organizing things better: data-directed

programming and message passing.

The idea in DDP is that instead of keeping the information about types versus operators inside functions,
as cond clauses, we record this information in a data structure. A&S provide tools put to set up the data
structure and get to examine it:

> (get ’foo ’baz)

#f

> (put ’foo ’baz ’hello)

> (get ’foo ’baz)

hello

Once you put something in the table, it stays there. (This is our first departure from functional programming.
But our intent is to set up the table at the beginning of the computation and then to treat it as constant

information, not as something that might be different the next time you call get, despite the example above.)
For now we take put and get as primitives; we’ll see how to build them in section 3.3 in three weeks.

The code is mostly unchanged from the conventional version; the tagged data ADT and the two shape ADTs
are unchanged. What’s different is how we represent the four algorithms for applying some operator to some
type:

;;;;; In file cs61a/lectures/2.4/geom.scm

(put ’square ’area (lambda (s) (* s s)))

(put ’circle ’area (lambda (r) (* pi r r)))

(put ’square ’perimeter (lambda (s) (* 4 s)))

(put ’circle ’perimeter (lambda (r) (* 2 pi r)))

Notice that the entry in each cell of the table is a function, not a symbol. We can now redefine the six
generic operators (“generic” because they work for any of the types):

;;;;; In file cs61a/lectures/2.4/geom.scm

(define (area shape)

(operate ’area shape))

(define (perimeter shape)

(operate ’perimeter shape))

(define (operate op obj) ;; like APPLY-GENERIC but for one operand

(let ((proc (get (type-tag obj) op)))

(if proc

(proc (contents obj))

(error "Unknown operator for type"))))

Now if we want to invent a new type, all we have to do is a few put instructions and the generic operators
just automatically work with the new type.
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Don’t get the idea that DDP just means a two-dimensional table of operator and type names! DDP is a
very general, great idea. It means putting the details of a system into data, rather than into programs, so
you can write general programs instead of very specific ones.

In the old days, every time a company got a computer they had to hire a bunch of programmers to write
things like payroll programs for them. They couldn’t just use someone else’s program because the details
would be different, e.g., how many digits in the employee number. These days you have general business
packages and each company can “tune” the program to their specific purpose with a data file.

Another example showing the generality of DDP is the compiler compiler. It used to be that if you wanted
to invent a new programming language you had to start from scratch in writing a compiler for it. But now
we have formal notations for expressing the syntax of the language. (See section 7.1, page 38, of the Scheme

Report at the back of the course reader.) A single program can read these formal descriptions and compile
any language. [The Scheme BNF is in cs61a/lectures/2.4/bnf.]

• Message-passing.

In conventional style, the operators are represented as functions that know about the different types; the
types themselves are just data. In DDP, the operators and types are all data, and there is one universal
operate function that does the work. We can also stand conventional style on its head, representing the
types as functions and the operations as mere data.

In fact, not only are the types functions, but so are the individual data themselves. That is, there is a
function (make-circle below) that represents the circle type, and when you invoke that function, it returns
a function that represents the particular circle you give it as its argument. Each circle is an object and
the function that represents it is a dispatch procedure that takes as its argument a message saying which
operation to perform.

;;;;; In file cs61a/lectures/2.4/geom.scm

(define (make-square side)

(lambda (message)

(cond ((eq? message ’area)

(* side side))

((eq? message ’perimeter)

(* 4 side))

(else (error "Unknown message")))))

(define (make-circle radius)

(lambda (message)

(cond ((eq? message ’area)

(* pi radius radius))

((eq? message ’perimeter)

(* 2 pi radius))

(else (error "Unknown message")))))

(define square5 (make-square 5))

(define circle3 (make-circle 3))
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The defines that produce the individual shapes look no different from before, but the results are different:
Each shape is a function, not a list structure. So to get the area of the shape circle3 we invoke that
shape with the proper message: (circle3 ’area). That notation is a little awkward so we provide a little
“syntactic sugar” that allows us to say (area circle3) as in the past:

;;;;; In file cs61a/lectures/2.4/msg.scm

(define (operate op obj)

(obj op))

(define (area shape)

(operate ’area shape))

(define (perimeter shape)

(operate ’perimeter shape))

Message passing may seem like an overly complicated way to handle this problem of shapes, but we’ll see
next week that it’s one of the key ideas in creating object-oriented programming. Message passing becomes
much more powerful when combined with the idea of local state that we’ll learn next week.

We seem to have abandoned tagged data; every shape type is just some function, and it’s hard to tell which
type of shape a given function represents. We could combine message passing with tagged data, if desired,
by adding a type message that each object understands.

(define (make-square side)

(lambda (message)

(cond ((eq? message ’area)

(* side side))

((eq? message ’perimeter)

(* 4 side))

((EQ? MESSAGE ’TYPE) ’SQUARE)

(else (error "Unknown message")))))

• Dyadic operations.

Our shape example is easier than the arithmetic example in the book because our operations only require
one operand, not two. For arithmetic operations like +, it’s not good enough to connect the operation with
a type; the two operands might have two different types. What should you do if you have to add a rational
number to a complex number?

There is no perfect solution to this problem. For the particular case of arithmetic, we’re lucky in that the
different types form a sequence of larger and larger sets. Every integer is a rational number; every rational is
a real; every real is a complex. So we can deal with type mismatch by raising the less-complicated operand
to the type of the other one. To add a rational number to a complex number, raise the rational number to
complex and then you’re left with the problem of adding two complex numbers. So we only need N addition
algorithms, not N2 algorithms, where N is the number of types.

Do we need N2 raising algorithms? No, because we don’t have to know directly how to raise a rational
number to complex. We can raise the rational number to the next higher type (real), and then raise that
real number to complex. So if we want to add 1

3
and 2 + 5i the answer comes out 2.3333 + 5i.

As this example shows, nonchalant raising can lose information. It would be better, perhaps, if we could
get the answer 7

3
+ 5i instead of the decimal approximation. Numbers are a rat’s nest full of traps for the

unwary. You will live longer if you only write programs about integers.

Note: The second midterm exam is next week.
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CS 61A Lecture Notes Week 7

Topic: Object-oriented programming

Reading: OOP Above-the-line notes in course reader

Midterm 2 is this week.

OOP is an abstraction. Above the line we have the metaphor of multiple independent intelligent agents;
instead of one computer carrying out one program we have hordes of objects each of which can carry out
computations. To make this work there are three key ideas within this metaphor:

• Message passing: An object can ask other objects to do things for it.

• Local state: An object can remember stuff about its own past history.

• Inheritance: One object type can be just like another except for a few differences.

We have invented an OOP language as an extension to Scheme. Basically you are still writing Scheme
programs, but with the vocabulary extended to use some of the usual OOP buzzwords. For example, a class

is a type of object; an instance is a particular object. “Complex number” is a class; 3 + 4i is an instance.
Here’s how the message-passing complex numbers from last week would look in OOP notation:

;;;;; In file cs61a/lectures/3.0/demo.scm

(define-class (complex real-part imag-part)

(method (magnitude)

(sqrt (+ (* real-part real-part)

(* imag-part imag-part))))

(method (angle)

(atan (/ imag-part real-part))) )

> (define c (instantiate complex 3 4))

> (ask c ’magnitude)

5

> (ask c ’real-part)

3

This shows how we define the class complex; then we create the instance c whose value is 3 + 4i; then we
send c a message (we ask it to do something) in order to find out that its magnitude is 5. We can also ask
c about its instantiation variables, which are the arguments used when the class is instantiated.

When we send a message to an object, it responds by carrying out a method, i.e., a procedure that the object
associates with the message.

So far, although the notation is new, we haven’t done anything different from what we did last week in
chapter 2. Now we take the big step of letting an object remember its past history, so that we are no
longer doing functional programming. The result of sending a message to an object depends not only on the
arguments used right now, but also on what messages we’ve sent the object before:

;;;;; In file cs61a/lectures/3.0/demo.scm

(define-class (counter)

(instance-vars (count 0))

(method (next)

(set! count (+ count 1))

count) )

> (define c1 (instantiate counter))

> (ask c1 ’next)

1
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> (ask c1 ’next)

2

> (define c2 (instantiate counter))

> (ask c2 ’next)

1

> (ask c1 ’next)

3

Each counter has its own instance variable to remember how many times it’s been sent the next message.

Don’t get confused about the terms instance variable versus instantiation variable. They are similar in that
each instance has its own version; the difference is that instantiation variables are given values when an
instance is created, using extra arguments to instantiate, whereas the initial values of instance variables
are specified in the class definition and are generally the same for every instance (although the values may
change as the computation goes on.)

Methods can have arguments. You supply the argument when you ask the corresponding message:

;;;;; In file cs61a/lectures/3.0/demo.scm

(define-class (doubler)

(method (say stuff) (se stuff stuff)))

> (define dd (instantiate doubler))

> (ask dd ’say ’hello)

(hello hello)

> (ask dd ’say ’(she said))

(she said she said)

Besides having a variable for each instance, it’s also possible to have variables that are shared by every
instance of the same class:

;;;;; In file cs61a/lectures/3.0/demo1.scm

(define-class (counter)

(instance-vars (count 0))

(class-vars (total 0))

(method (next)

(set! total (+ total 1))

(set! count (+ count 1))

(list count total)))

> (define c1 (instantiate counter))

> (ask c1 ’next)

(1 1)

> (ask c1 ’next)

(2 2)

> (define c2 (instantiate counter))

> (ask c2 ’next)

(1 3)

> (ask c1 ’next)

(3 4)

Now each next message tells us both the count for this particular counter and the overall count for all
counters combined.

To understand the idea of inheritance, we’ll first define a person class that knows about talking in various
ways, and then define a pigger class that’s just like a person except for talking in Pig Latin:
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;;;;; In file cs61a/lectures/3.0/demo1.scm

(define-class (person name)

(method (say stuff) stuff)

(method (ask stuff) (ask self ’say (se ’(would you please) stuff)))

(method (greet) (ask self ’say (se ’(hello my name is) name))) )

> (define marc (instantiate person ’marc))

> (ask marc ’say ’(good morning))

(good morning)

> (ask marc ’ask ’(open the door))

(would you please open the door)

> (ask marc ’greet)

(hello my name is marc)

Notice that an object can refer to itself by the name self; this is an automatically-created instance variable
in every object whose value is the object itself. (We’ll see when we look below the line that there are some
complications about making this work.)

;;;;; In file cs61a/lectures/3.0/demo1.scm

(define-class (pigger name)

(parent (person name))

(method (pigl wd)

(if (member? (first wd) ’(a e i o u))

(word wd ’ay)

(ask self ’pigl (word (bf wd) (first wd))) ))

(method (say stuff)

(if (atom? stuff)

(ask self ’pigl stuff)

(map (lambda (w) (ask self ’pigl w)) stuff))) )

> (define porky (instantiate pigger ’porky))

> (ask porky ’say ’(good morning))

(oodgay orningmay)

> (ask porky ’ask ’(open the door))

(ouldway ouyay easeplay openay ethay oorday)

The crucial point here is that the pigger class doesn’t have an ask method in its definition. When we ask
porky to ask something, it uses the ask method in its parent (person) class.

Also, when the parent’s ask method says (ask self ’say ...) it uses the say method from the pigger

class, not the one from the person class. So Porky speaks Pig Latin even when asking something.

What happens when you send an object a message for which there is no method defined in its class? If the
class has no parent, this is an error. If the class does have a parent, and the parent class understands the
message, it works as we’ve seen here. But you might want to create a class that follows some rule of your
own devising for unknown messages:

;;;;; In file cs61a/lectures/3.0/demo2.scm

(define-class (squarer)

(default-method (* message message))

(method (7) ’buzz) )

> (define s (instantiate squarer))

> (ask s 6) > (ask s 7) > (ask s 8)

36 buzz 64
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Within the default method, the name message refers to whatever message was sent. (The name args refers
to a list containing any additional arguments that were used.)

Let’s say we want to maintain a list of all the instances that have been created in a certain class. It’s
easy enough to establish the list as a class variable, but we also have to make sure that each new instance
automatically adds itself to the list. We do this with an initialize clause:

;;;;; In file cs61a/lectures/3.0/demo2.scm

(define-class (counter)

(instance-vars (count 0))

(class-vars (total 0) (counters ’()))

(initialize (set! counters (cons self counters)))

(method (next)

(set! total (+ total 1))

(set! count (+ count 1))

(list count total)))

> (define c1 (instantiate counter))

> (define c2 (instantiate counter))

> (ask counter ’counters)

(#<procedure> #<procedure>)

There was a bug in our pigger class definition; Scheme gets into an infinite loop if we ask Porky to greet,
because it tries to translate the word my into Pig Latin but there are no vowels aeiou in that word. To get
around this problem, we can redefine the pigger class so that its say method says every word in Pig Latin
except for the word my, which it’ll say using the usual method that persons who aren’t piggers use:

;;;;; In file cs61a/lectures/3.0/demo2.scm

(define-class (pigger name)

(parent (person name))

(method (pigl wd)

(if (member? (first wd) ’(a e i o u))

(word wd ’ay)

(ask self ’pigl (word (bf wd) (first wd))) ))

(method (say stuff)

(if (atom? stuff)

(if (equal? stuff ’my) (usual ’say stuff) (ask self ’pigl stuff))

(map (lambda (w) (ask self ’say w)) stuff))) )

> (define porky (instantiate pigger ’porky))

> (ask porky ’greet)

(ellohay my amenay isay orkypay)

(Notice that we had to create a new instance of the new class. Just doing a new define-class doesn’t change
any instances that have already been created in the old class. Watch out for this while you’re debugging the
OOP programming project.)

We invoke usual in the say method to mean “say this stuff in the usual way, the way that my parent class
would use.”

The OOP above-the-line section in the course reader talks about even more capabilities of the system, e.g.,
multiple inheritance with more than one parent class for a single child class.
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CS 61A Lecture Notes Week 8

Topic: Local state variables, environments

Reading: Abelson & Sussman, Section 3.1, 3.2; OOP below the line

We said the three big ideas in the OOP interface are message passing, local state, and inheritance. You
know from section 2.4 how message passing is implemented below the line in Scheme, i.e., with a dispatch
function that takes a message as argument and returns a method. This week we’re talking about how local
state works.

A local variable is one that’s only available within a particular part of the program; in Scheme this generally
means within a particular procedure. We’ve used local variables before; let makes them. A state variable
is one that remembers its value from one invocation to the next; that’s the new part.

First of all let’s look at global state—that is, let’s try to remember some information about a computation
but not worry about having separate versions for each object.

;;;;; In file cs61a/lectures/3.1/count1.scm

(define counter 0)

(define (count)

(set! counter (+ counter 1))

counter)

> (count)

1

> (count)

2

What’s new here is the special form set! that allows us to change the value of a variable. This is not like
let, which creates a temporary, local binding; this makes a permanent change in some variable that must
have already existed. The syntax is just like define (but not the abbreviation for defining a function): it
takes an unevaluated name and an expression whose value provides the new value.

A crucial thing to note about set! is that the substitution model no longer works. We can’t substitute the
value of counter wherever we see the name counter, or we’ll end up with

(set! 0 (+ 0 1))

0

which doesn’t make any sense. From now on we use a model of variables that’s more like what you learned
in 7th grade, in which a variable is a shoebox in which you can store some value. The difference from the
7th grade version is that we can have several shoeboxes with the same name (the instance variables in the
different objects, for example) and we have to worry about how to keep track of that. Section 3.2 of A&S
explains the environment model that keeps track for us.

Another new thing is that a procedure body can include more than one expression. In functional program-
ming, the expressions don’t do anything except compute a value, and a function can only return one value,
so it doesn’t make sense to have more than one expression in it. But when we invoke set! there is an effect

that lasts beyond the computation of that expression, so now it makes sense to have that expression and then
another expression that does something else. When a body has more than one expression, the expressions
are evaluated from left to right (or top to bottom) and the value returned by the procedure is the value
computed by the last expression. All but the last are just for effect.
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We’ve seen how to have a global state variable. We’d like to try for local state variables. Here’s an attempt
that doesn’t work:

;;;;; In file cs61a/lectures/3.1/count.lose

(define (count)

(let ((counter 0)) > (count)

(set! counter (+ counter 1)) 1

counter)) > (count)

1

> (count)

1

It was a good idea to use let, because that’s a way we know to create local variables. But let creates a new

local variable each time we invoke it. Each call to count creates a new counter variable whose value is 0.

The secret is to find a way to call let only once, when we create the count function, instead of calling let

every time we invoke count. Here’s how:

;;;;; In file cs61a/lectures/3.1/count2.scm

(define count

(let ((result 0))

(lambda ()

(set! result (+ result 1))

result)))

Notice that there are no parentheses around the word count on the first line! Instead of

(define count (lambda () (let ...)))

(which is what the earlier version means) we have essentially interchanged the lambda and the let so that
the former is inside the latter:

(define count (let ... (lambda () ...)))

We’ll have to examine the environment model in detail before you can really understand why this works. A
handwavy explanation is that the let creates a variable that’s available to things in the body of the let; the
lambda is in the body of the let; and so the variable is available to the function that the lambda creates.

The reason we wanted local state variables was so that we could have more than one of them. Let’s take
that step now. Instead of having a single procedure called count that has a single local state variable, we’ll
write a procedure make-count that, each time you call it, makes a new counter.

;;;;; In file cs61a/lectures/3.1/count3.scm

(define (make-count) > (define dracula (make-count))

(let ((result 0)) > (dracula)

(lambda () 1

(set! result (+ result 1)) > (dracula)

result))) 2

> (define monte-cristo (make-count))

> (monte-cristo)

1

> (dracula)

3

Each of dracula and monte-cristo is the result of evaluating the expression (lambda () ...) to produce
a procedure. Each of those procedures has access to its own local state variable called result. Result is
temporary with respect to make-count but permanent with respect to dracula or monte-cristo, because
the let is inside the lambda for the former but outside the lambda for the latter.
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• Environment model of evaluation.

For now we’re just going to introduce the central issues about environments, leaving out a lot of details.
You’ll get those next time.

The question is, what happens when you invoke a procedure? For example, suppose we’ve said

(define (square x) (* x x))

and now we say (square 7); what happens? The substitution model says

1. Substitute the actual argument value(s) for the formal parameter(s) in the body of the function;

2. Evaluate the resulting expression.

In this example, the substitution of 7 for x in (* x x) gives (* 7 7). In step 2 we evaluate that expression
to get the result 49.

We now forget about the substitution model and replace it with the environment model:

1. Create a frame with the formal parameter(s) bound to the actual argument values;

2. Use this frame to extend the lexical environment;

3. Evaluate the body (without substitution!) in the resulting environment.

A frame is a collection of name-value associations or bindings. In our example, the frame has one binding,
from x to 7.

Skip step 2 for a moment and think about step 3. The idea is that we are going to evaluate the expression
(* x x) but we are refining our notion of what it means to evaluate an expression. Expressions are no longer
evaluated in a vacuum, but instead, every evaluation must be done with respect to some environment—that
is, some collection of bindings between names and values. When we are evaluating (* x x) and we see the
symbol x, we want to be able to look up x in our collection of bindings and find the value 7.

Looking up the value bound to a symbol is something we’ve done before with global variables. What’s
new is that instead of one central collection of bindings we now have the possibility of local environments.
The symbol x isn’t always 7, only during this one invocation of square. So, step 3 means to evaluate the
expression in the way that we’ve always understood, but looking up names in a particular place.

What’s step 2 about? The point is that we can’t evaluate (* x x) in an environment with nothing but the
x/7 binding, because we also have to look up a value for the symbol * (namely, the multiplication function).
So, we create a new frame in step 1, but that frame isn’t an environment by itself. Instead we use the new
frame to extend an environment that already existed. That’s what step 2 says.

Which old environment do we extend? In the square example there is only one candidate, the global

environment. But in more complicated situations there may be several environments available. For example:

(define (f x)

(define (g y)

(+ x y))

(g 3))

> (f 5)

When we invoke f, we create a frame (call it F1) in which x is bound to 5. We use that frame to extend
the global environment (call it G), creating a new environment E1. Now we evaluate the body of f, which
contains the internal definition for g and the expression (g 3). To invoke g, we create a frame in which y is
bound to 3. (Call this frame F2.) We are going to use F2 to extend some old environment, but which? G or
E1? The body of g is the expression (+ x y). To evaluate that, we need an envoironment in which we can
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look up all of + (in G), x (in F1), and y (in F2). So we’d better make our new environment by extending
E1, not by extending G.

The example with f and g shows, in a very simple way, why the question of multiple environments comes
up. But it still doesn’t show us the full range of possible rules for choosing an environment. In the f and g

example, the environment where g is defined is the same as the environment from which it’s invoked. But
that doesn’t always have to be true:

(define (make-adder n)

(lambda (x) (+ x n)))

(define 3+ (make-adder 3))

(define n 7)

> (3+ n)

When we invoke make-adder, we create the environment E1 in which n is bound to 3. In the global
environment G, we bind n to 7. When we evaluate the expression (3+ n), what environment are we in?
What value does n have in this expression? Surely it should have the value 7, the global value. So we
evaluate expressions that you type in G. When we invoke 3+ we create the frame F2 in which x is bound to
7. (Remember, 3+ is the function that was created by the lambda inside make-adder.

We are going to use F2 to extend some environment, and in the resulting environment we’ll evaluate the body
of 3+, namely (+ x n). What value should n have in this expression? It had better have the value 3 or we’ve
defeated the purpose of make-adder. Therefore, the rule is that we do not extend the current environment
at the time the function is invoked, which would be G in this case. Rather, we extend the environment
in which the function was created, i.e., the environment in which we evaluated the lambda expression that
created it. In this case that’s E1, the environment that was created for the invocation of make-adder.

Scheme’s rule, in which the procedure’s defining environment is extended, is called lexical scope. The other
rule, in which the current environment is extended, is called dynamic scope. We’ll see in project 4 that a
language with dynamic scope is possible, but it would have different features from Scheme.

Remember why we needed the environment model: We want to understand local state variables. The
mechanism we used to create those variables was

(define some-procedure

(let ((state-var initial-value))

(lambda (...) ...)))

Roughly speaking, the let creates a frame with a binding for state-var. Within that environment, we
evaluate the lambda. This creates a procedure within the scope of that binding. Every time that procedure
is invoked, the environment where it was created—that is, the environment with state-var bound—is
extended to form the new environment in which the body is evaluated. These new environments come and
go, but the state variable isn’t part of the new frames; it’s part of the frame in which the procedure was
defined. That’s why it sticks around.
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• Here are the complete rules for the environment model:

Every expression is either an atom or a list.

At any time there is a current frame, initially the global frame.

I. Atomic expressions.

A. Numbers, strings, #T, and #F are self-evaluating.

B. If the expression is a symbol, find the first available binding. (That is, look in the current frame;
if not found there, look in the frame ”behind” the current frame; and so on until the global frame
is reached.)

II. Compound expressions (lists).

If the car of the expression is a symbol that names a special form, then follow its rules (II.B below).
Otherwise the expression is a procedure invocation.

A. Procedure invocation.

Step 1: Evaluate all the subexpressions (using these same rules).

Step 2: Apply the procedure (the value of the first subexpression) to the arguments (the values of
the other subexpressions).

(a) If the procedure is compound (user-defined):

a1: Create a frame with the formal parameters of the procedure bound to the actual argument
values.

a2: Extend the procedure’s defining environment with this new frame.

a3: Evaluate the procedure body, using the new frame as the current frame.

*** ONLY COMPOUND PROCEDURE INVOCATION CREATES A FRAME ***

(b) If the procedure is primitive:

Apply it by magic.

B. Special forms.

1. Lambda creates a procedure. The left circle points to the text of the lambda expression; the
right circle points to the defining environment, i.e., to the current environment at the time the
lambda is seen.

*** ONLY LAMBDA CREATES A PROCEDURE ***

2. Define adds a new binding to the current frame.

3. Set! changes the first available binding (see I.B for the definition of ”first available”).

4. Let = lambda (II.B.1) + invocation (II.A)

5. (define (...) ...) = lambda (II.B.1) + define (II.B.2)

6. Other special forms follow their own rules (cond, if).
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• Environments and OOP.

Class and instance variables are both local state variables, but in different environments:

;;;;; In file cs61a/lectures/3.2/count4.scm

(define make-count

(let ((glob 0))

(lambda ()

(let ((loc 0))

(lambda ()

(set! loc (+ loc 1))

(set! glob (+ glob 1))

(list loc glob))))))

The class variable glob is created in an environment that surrounds the creation of the outer lambda, which
represents the entire class. The instance variable loc is created in an environment that’s inside the class
lambda, but outside the second lambda that represents an instance of the class.

The example above shows how environments support state variables in OOP, but it’s simplified in that the
instance is not a message-passing dispatch procedure. Here’s a slightly more realistic version:

;;;;; In file cs61a/lectures/3.2/count5.scm

(define make-count

(let ((glob 0))

(lambda ()

(let ((loc 0))

(lambda (msg)

(cond ((eq? msg ’local)

(lambda ()

(set! loc (+ loc 1))

loc))

((eq? msg ’global)

(lambda ()

(set! glob (+ glob 1))

glob))

(else (error "No such method" msg)) ))))))

The structure of alternating lets and lambdas is the same, but the inner lambda now generates a dispatch
procedure. Here’s how we say the same thing in OOP notation:

;;;;; In file cs61a/lectures/3.2/count6.scm

(define-class (count)

(class-vars (glob 0))

(instance-vars (loc 0))

(method (local)

(set! loc (+ loc 1))

loc)

(method (global)

(set! glob (+ glob 1))

glob))
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CS 61A Lecture Notes Week 9

Topic: Mutable data, queues, tables

Reading: Abelson & Sussman, Section 3.3.1–3

Play the animal game:

> (load "lectures/3.3/animal.scm")(load "lectures/3.3/animal.scm")(load "lectures/3.3/animal.scm")

#f

> (animal-game)(animal-game)(animal-game)

Does it have wings? nonono

Is it a rabbit? nonono

I give up, what is it? gorillagorillagorilla

Please tell me a question whose answer is YES for a gorilla

and NO for a rabbit.

Enclose the question in quotation marks.

"Does it have long arms?""Does it have long arms?""Does it have long arms?"

"Thanks. Now I know better."

> (animal-game)(animal-game)(animal-game)

Does it have wings? nonono

Does it have long arms? nonono

Is it a rabbit? yesyesyes

"I win!"

The crucial point about this program is that its behavior changes each time it learns about a new animal.
Such learning programs have to modify a data base as they run. We represent the animal game data base
as a tree; we want to be able to splice a new branch into the tree (replacing what used to be a leaf node).

Changing what’s in a data structure is called mutation. Scheme provides primitives set-car! and set-cdr!

for this purpose.

They aren’t special forms! The pair that’s being mutated must be located by computing some expression.
For example, to modify the second element of a list:

(set-car! (cdr lst) ’new-value)

They’re different from set!, which changes the binding of a variable. We use them for different purposes, and
the syntax is different. Still, they are connected in two ways: (1) Both make your program non-functional,
by making a permanent change that can affect later procedure calls. (2) Each can be implemented in terms
of the other; the book shows how to use local state variables to simulate mutable pairs, and later we’ll see
how the Scheme interpreter uses mutable pairs to implement environments, including the use of set! to
change variable values.

The only purpose of mutation is efficiency. In principle we could write the animal game functionally by
recopying the entire data base tree each time, and using the new one as an argument to the next round of
the game. But the saving can be quite substantial.

Identity. Once we have mutation we need a subtler view of the idea of equality. Up to now, we could just
say that two things are equal if they look the same. Now we need two kinds of equality, that old kind plus
a new one: Two things are identical if they are the very same thing, so that mutating one also changes the
other. Example:

> (define a (list ’x ’y ’z))

> (define b (list ’x ’y ’z))

> (define c a)
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> (equal? b a)

#T

> (eq? b a)

#F

> (equal? c a)

#T

> (eq? c a)

#T

The two lists a and b are equal, because they print the same, but they’re not identical. The lists a and c

are identical; mutating one will change the other:

> (set-car! (cdr a) ’foo)

> a

(X FOO Z)

> b

(X Y Z)

> c

(X FOO Z)

If we use mutation we have to know what shares storage with what. For example, (cdr a) shares storage
with a. (Append a b) shares storage with b but not with a. (Why not? Read the append procedure.)

The Scheme standard says you’re not allowed to mutate quoted constants. That’s why I said (list ’x ’y ’z)

above and not ’(x y z). The text sometimes cheats about this. The reason is that Scheme implementations
are allowed to share storage when the same quoted constant is used twice in your program.

Here’s the animal game:

;;;;; In file cs61a/lectures/3.3/animal.scm

(define (animal node)

(define (type node) (car node))

(define (question node) (cadr node))

(define (yespart node) (caddr node))

(define (nopart node) (cadddr node))

(define (answer node) (cadr node))

(define (leaf? node) (eq? (type node) ’leaf))

(define (branch? node) (eq? (type node) ’branch))

(define (set-yes! node x)

(set-car! (cddr node) x))

(define (set-no! node x)

(set-car! (cdddr node) x))

(define (yorn)

(let ((yn (read)))

(cond ((eq? yn ’yes) #t)

((eq? yn ’no) #f)

(else (display "Please type YES or NO")

(yorn)))))
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(display (question node))

(display " ")

(let ((yn (yorn)) (correct #f) (newquest #f))

(let ((next (if yn (yespart node) (nopart node))))

(cond ((branch? next) (animal next))

(else (display "Is it a ")

(display (answer next))

(display "? ")

(cond ((yorn) "I win!")

(else (newline)

(display "I give up, what is it? ")

(set! correct (read))

(newline)

(display "Please tell me a question whose answer ")

(display "is YES for a ")

(display correct)

(newline)

(display "and NO for a ")

(display (answer next))

(display ".")

(newline)

(display "Enclose the question in quotation marks.")

(newline)

(set! newquest (read))

(if yn

(set-yes! node (make-branch newquest

(make-leaf correct)

next))

(set-no! node (make-branch newquest

(make-leaf correct)

next)))

"Thanks. Now I know better.")))))))

(define (make-branch q y n)

(list ’branch q y n))

(define (make-leaf a)

(list ’leaf a))

(define animal-list

(make-branch "Does it have wings?"

(make-leaf ’parrot)

(make-leaf ’rabbit)))

(define (animal-game) (animal animal-list))

Things to note: Even though the main structure of the program is sequential and BASIC-like, we haven’t
abandoned data abstraction. We have constructors, selectors, and mutators—a new idea—for the nodes of
the game tree.
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• Tables. We’re now ready to understand how to implement the put and get procedures that A&S used
at the end of chapter 2. A table is a list of key-value pairs, with an extra element at the front just so that
adding the first entry to the table will be no diffferent from adding later entries. (That is, even in an “empty”
table we have a pair to set-cdr!)

;;;;; In file cs61a/lectures/3.3/table.scm

(define (get key)

(let ((record (assoc key (cdr the-table))))

(if (not record)

#f

(cdr record))))

(define (put key value)

(let ((record (assoc key (cdr the-table))))

(if (not record)

(set-cdr! the-table

(cons (cons key value)

(cdr the-table)))

(set-cdr! record value)))

’ok)

(define the-table (list ’*table*))

Assoc is in the book:

(define (assoc key records)

(cond ((null? records) #f)

((equal? key (caar records)) (car records))

(else (assoc key (cdr records))) ))

In chapter 2, A&S provided a single, global table, but we can generalize this in the usual way by taking an
extra argument for which table to use. That’s how lookup and insert! work.

One little detail that always confuses people is why, in creating two-dimensional tables, we don’t need a
*table* header on each of the subtables. The point is that lookup and insert! don’t pay any attention
to the car of that header pair; all they need is to represent a table by some pair whose cdr points to the
actual list of key-value pairs. In a subtable, the key-value pair from the top-level table plays that role. That
is, the entire subtable is a value of some key-value pair in the main table. What it means to be “the value
of a key-value pair” is to be the cdr of that pair. So we can think of that pair as the header pair for the
subtable.
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• Memoization. Exercise 3.27 is a pain in the neck because it asks for a very complicated environment
diagram, but it presents an extremely important idea. If we take the simple Fibonacci number program:

;;;;; In file cs61a/lectures/3.3/fib.scm

(define (fib n)

(if (< n 2)

1

(+ (fib (- n 1))

(fib (- n 2)) )))

we recall that it takes Θ(2n) time because it ends up doing a lot of subproblems redundantly. For example,
if we ask for (fib 5) we end up computing (fib 3) twice. We can fix this by remembering the values that
we’ve already computed. The book’s version does it by entering those values into a local table. It may be
simpler to understand this version, using the global get/put:

;;;;; In file cs61a/lectures/3.3/fib.scm

(define (fast-fib n)

(if (< n 2)

n ; base case unchanged

(let ((old (get ’fib n)))

(if (number? old) ; do we already know the answer?

old

(begin ; if not, compute and learn it

(put ’fib n (+ (fast-fib (- n 1))

(fast-fib (- n 2))))

(get ’fib n))))))

Is this functional programming? That’s a more subtle question than it seems. Calling memo-fib makes a
permanent change in the environment, so that a second call to memo-fib with the same argument will carry
out a very different (and much faster) process. But the new process will get the same answer! If we look
inside the box, memo-fib works non-functionally. But if we look only at its input-output behavior, memo-fib
is a function because it always gives the same answer when called with the same argument.

What if we tried to memoize random? It would be a disaster; instead of getting a random number each time,
we’d get the same number repeatedly! Memoization only makes sense if the underlying function really is

functional.

This idea of using a non-functional implementation for something that has functional behavior will be very
useful later when we look at streams.
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•• VECTORS. So far we have seen one primitive data aggregation mechanism: the pair. We use linked
pairs to represent sequences (an abstract type) in the form of lists.

The list suffers from one important weakness: Finding the nth element of a list takes time Θ(n) because you
have to call cdr n−1 times. Scheme, like most programming languages, also provides a primitive aggregation
mechanism without this weakness. In Scheme it’s called a vector ; in many other languages it’s called an
array, but it’s the same idea. Finding the nth element of a vector takes Θ(1) time.

• Vector primitives

Some of the procedures for vectors are exact analogs to procedures for lists:

(vector a b c d ...) (list a b c d ...)

(vector-ref vec n) (list-ref lst n)

(vector-length vec) (length lst)

Most notably, the selector for vectors, vector-ref, is just like the selector for lists (except that it’s faster).

What about constructors? There’s a vector procedure, just like the list procedure, that’s good for situa-
tions in which you know exactly how many elements the sequence will have, and all of the element values,
all at once. But there are no vector analogs to the list constructors cons and append, which are useful for
extending lists. In particular, cons is the workhorse of recursive list processing procedures; we’ll see that
vector processing is done quite differently.

The weakness of vectors is that they can’t be extended. You have to know the length of the vector when
you create it. So instead of cons and append we have

(make-vector len)

which creates a vector of length len, in which the element values are unspecified. (You then use mutation,
discussed below, to fill in the desired values.) Alternatively, if you want to create a vector in which every
element has the same initial value, you can say

(make-vector len value)

Because vectors are created all at once, rather than one element at a time, mutation is crucial to any useful
vector program. The primitive mutator for vectors is

(vector-set! vec n value)

This procedure is comparable to set-car! and set-cdr! for pairs. (It’s interesting to note that Scheme
doesn’t provide a mutator for the nth element of a list; this is because most list processing is done using
functional programming style, and pair mutation is mainly for special cases such as tables.)

The printed format of a vector is

#(a b c d)

You can quote this to include a constant vector in a program. (Note: In STk, vectors are self-evaluating, so
you can omit the quotation mark, but this is a nonstandard extension to Scheme.)

Scheme also provides functions list->vector and vector->list that let you convert between the two
sequence implementations.
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• Vector programming style

Let’s write a mapping function for vectors; it will take a function and a vector as arguments, and return a
vector.

For reference, here’s the map function for lists:

(define (map fn lst)

(if (null? lst)

’()

(cons (fn (car lst))

(map fn (cdr lst)))))

To do the same task for vectors, we must first create a new vector of the same length as the argument vector,
then fill in the values using mutation:

;;;;; In file cs61a/lectures/vector.scm

(define (vector-map fn vec)

(define (loop newvec n)

(if (< n 0)

newvec

(begin (vector-set! newvec n (fn (vector-ref vec n)))

(loop newvec (- n 1)))))

(loop (make-vector (vector-length vec)) (- (vector-length vec) 1)))

This is a lot more complicated! It requires a helper procedure, and an extra index variable, n, to keep track
of the element number within the vector. By contrast, the list version of map never actually knows how long
its argument list is.

• Strengths and weaknesses

Of course, if we wanted, we could write our own equivalent to cons for vectors:

;;;;; In file cs61a/lectures/vector.scm

(define (vector-cons value vec)

(define (loop newvec n)

(if (= n 0)

(begin (vector-set! newvec n value)

newvec)

(begin (vector-set! newvec n (vector-ref vec (- n 1)))

(loop newvec (- n 1)))))

(loop (make-vector (+ (vector-length vec) 1)) (vector-length vec)))

If we wrote similar procedures vector-car and vector-cdr, we could then write vector-map in a style
exactly like map. But this would be a bad idea, because our vector-cons requires Θ(n) time to copy the
elements from the old vector to the new one.

operation lists vectors

nth element list-ref, Θ(n) vector-ref, Θ(1)
add new element cons, Θ(1) vector-cons, Θ(n)

This is why there isn’t one best way to represent sequences. Lists are faster (and allow for cleaner code) at
adding elements, but vectors are faster at selecting arbitrary elements.

(Note, though, that if you want to select all the elements of a sequence, one after another, then lists are just
as fast as arrays. It’s only when you want to jump around within the sequence that arrays are faster.)
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• Example: Shuffling

Suppose we want to shuffle a deck of cards — we want to reorder the cards randomly. We’ll look at three
solutions to this problem.

First, here’s a solution using functional programming with lists. Because we aren’t allowing mutation of
pairs, this version does a lot of recopying:

;;;;; In file cs61a/lectures/vector.scm

(define (shuffle1 lst)

(define (loop in out n)

(if (= n 0)

(cons (car in) (shuffle1 (append (cdr in) out)))

(loop (cdr in) (cons (car in) out) (- n 1))))

(if (null? lst)

’()

(loop lst ’() (random (length lst)))))

This is a case in which functional programming has few virtues. The code is hard to read, and it takes Θ(n2)
time to shuffle a list of length n. (There are n recursive calls to shuffle1, each of which calls the Θ(n)
primitives append and length as well as Θ(n) calls to the helper function loop.)

We can improve things using list mutation. Any list-based solution will still be Θ(n2), because it takes Θ(n)
time to find one element at a randomly chosen position, and we have to do that n times. But we can improve
the constant factor by avoiding the copying of pairs that append does in the first version:

;;;;; In file cs61a/lectures/vector.scm

(define (shuffle2! lst)

(if (null? lst)

’()

(let ((index (random (length lst))))

(let ((pair ((repeated cdr index) lst))

(temp (car lst)))

(set-car! lst (car pair))

(set-car! pair temp)

(shuffle2! (cdr lst))

lst))))

(Note: This could be improved still further by calling length only once, and using a helper procedure to
subtract one from the length in each recursive call. But that would make the code more complicated, so I’m
not bothering. You can take it as an exercise if you’re interested.)

Vectors allow a more dramatic speedup, because finding each element takes Θ(1) instead of Θ(n):

;;;;; In file cs61a/lectures/vector.scm

(define (shuffle3! vec)

(define (loop n)

(if (= n 0)

vec

(let ((index (random n))

(temp (vector-ref vec (- n 1))))

(vector-set! vec (- n 1) (vector-ref vec index))

(vector-set! vec index temp)

(loop (- n 1)))))

(loop (vector-length vec)))

The total time for this version is Θ(n), because it makes n recursive calls, each of which takes constant time.
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• How it works

One handwavy paragraph on why vectors have the performance they do:

A pair is two pointers attached to each other in a single block of memory. A vector is similar, but it’s a block
of n pointers for an arbitrary (but fixed) number n. Since a vector is one contiguous block of memory, if you
know the address of the beginning of the block, you can just add k to find the address of the kth element.
The downside is that in order to get all the elements in a single block of memory, you have to allocate the
block all at once.

If you don’t understand that, don’t worry about it until 61B.

Note: Programming project 3 starts this week.
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CS 61A Lecture Notes Week 10

Topic: Client/server paradigm, Concurrency

Reading: Abelson & Sussman, Section 3.4

• Client/server programming paradigm

Before networks, most programs ran on a single computer. Today it’s common for programs to involve
cooperation between computers. The usual reason is that you want to run a program on your computer that
uses data located elsewhere. A common example is using a browser on your computer to read a web page
stored somewhere else.

To make this cooperation possible, two programs are actually required: the client program on your personal
computer and the server program on the remote computer. Sometimes the client and the server are written
by a single group, but often someone publishes a standard document that allows any client to work with any
server that follows the same standard. For example, you can use Mozilla, Netscape, or Internet Explorer to
read most web pages, because they all follow standards set by the World Wide Web Consortium.

For this course we provide a sample client/server system, implementing a simple Instant Message protocol.
The files are available in

~cs61a/lib/im-client.scm

~cs61a/lib/im-server.scm

To use them, you must first start a server. Load im-server.scm and call the procedure im-server-start;
it will print the IP (Internet Protocol) address of the machine you’re using, along with another number,
the port assigned to the server. Clients will use these numbers to connect to the server. Port numbers are
important because there might be more than one server program running on the same computer, and also
to keep track of connections from more than one client.

(Why don’t you need these numbers when using “real” network software? You don’t need to know the IP
address because your client software knows how to connect to nameservers to translate the host names you
give it into addresses. And most client/server protocols use fixed, registered port numbers that are built into
the software. For example, web browsers use port 80, while the ssh protocol you may use to connect to your
class account from home uses port 22. But our sample client/server protocol doesn’t have a registered port
number, so the operating system assigns a port to the server when you start it.)

To connect to the server, load im-client.scm and call im-enroll with the IP address and port number as
arguments. (Details are in this week’s lab assignment.) Then use the im procedure to send a message to
other people connected to the same server.

This simple implementation uses the Scheme interpreter as its user interface; you send messages by typing
Scheme expressions. Commercial Instant Message clients have a more ornate user interface, that accept
mouse clicks in windows listing other clients to specify the recipient of a message. But our version is realistic
in the way it uses the network; the IM client on your home computer connects to a particular port on a
particular server in order to use the facility. (The only difference is that a large commercial IM system will
have more than one server; your client connects to the one nearest you, and the servers send messages among
themselves to give the illusion of one big server to which everyone is connected.)

In the news these days, client/server protocols are sometimes contrasted with another approach called peer-

to-peer networking, such as file-sharing systems like Napster and Kazaa. The distinction is social rather
than strictly technical. In each individual transaction using a peer-to-peer protocol, one machine is acting
as a server and the other as a client. What makes it peer-to-peer networking is that any machine using the
protocol can play either role, unlike the more usual commercial networking idea in which rich companies
operate servers and ordinary people operate clients.
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Internet primitives in STk

STk defines sockets, on systems which support them, as first class objects. Sockets permit processes to
communicate even if they are on different machines. Sockets are useful for creating client-server applications.

(make-client-socket hostname port-number)(make-client-socket hostname port-number)(make-client-socket hostname port-number)

make-client-socket returns a new socket object. This socket establishes a link between the running
application listening on port port-number of hostname.

(socket? socket)(socket? socket)(socket? socket)

Returns #t if socket is a socket, otherwise returns #f.

(socket-host-name socket)(socket-host-name socket)(socket-host-name socket)

Returns a string which contains the name of the distant host attached to socket. If socket was created with
make-client-socket, this procedure returns the official name of the distant machine used for connection. If
socket was created with make-server-socket, this function returns the official name of the client connected
to the socket. If no client has yet used the socket, this function returns #f.

(socket-host-address socket)(socket-host-address socket)(socket-host-address socket)

Returns a string which contains the IP number of the distant host attached to socket. If socket was
created with make-client-socket, this procedure returns the IP number of the distant machine used for
connection. If socket was created with make-server-socket, this function returns the address of the client
connected to the socket. If no client has yet used the socket, this function returns #f.

(socket-local-address socket)(socket-local-address socket)(socket-local-address socket)

Returns a string which contains the IP number of the local host attached to socket.

(socket-port-number socket)(socket-port-number socket)(socket-port-number socket)

Returns the integer number of the port used for socket.

(socket-input socket)(socket-input socket)(socket-input socket)

(socket-output socket)(socket-output socket)(socket-output socket)

Returns the port associated for reading or writing with the program connected with socket. If no connection
has been established, these functions return #f. The following example shows how to make a client socket.
Here we create a socket on port 13 of the machine kaolin.unice.fr. [Port 13 is generally used for testing:
making a connection to it returns the distant system’s idea of the time of day.]

(let ((s (make-client-socket "kaolin.unice.fr" 13)))

(format #t "Time is: ~A\n" (read-line (socket-input s)))

(socket-shutdown s))

(make-server-socket)(make-server-socket)(make-server-socket)

(make-server-socket port-number)(make-server-socket port-number)(make-server-socket port-number)

make-server-socket returns a new socket object. If port-number is specified, the socket listens on the
specified port; otherwise, the communication port is chosen by the system.
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(socket-accept-connection socket)(socket-accept-connection socket)(socket-accept-connection socket)

socket-accept-connection waits for a client connection on the given socket. If no client is already waiting
for a connection, this procedure blocks its caller; otherwise, the first connection request on the queue of
pending connections is connected to socket. This procedure must be called on a server socket created
with make-server-socket. The return value of socket-accept-connection is undefined. The following
example is a simple server which waits for a connection on the port 1234. Once the connection with the
distant program is established, we read a line on the input port associated to the socket and we write the
length of this line on its output port. [Under Unix, you can simply connect to listening socket with the telnet
command. With the given example, this can be achieved by typing the command

telnet localhost 1234

in a shell window.]

(let ((s (make-server-socket 1234)))

(socket-accept-connection s)

(let ((l (read-line (socket-input s))))

(format (socket-output s) "Length is: ~A\n" (string-length l))

(flush (socket-output s)))

(socket-shutdown s))

(socket-shutdown socket)(socket-shutdown socket)(socket-shutdown socket)

(socket-shutdown socket close)(socket-shutdown socket close)(socket-shutdown socket close)

Socket-shutdown shuts down the connection associated to socket. Close is a boolean; it indicates if
the socket must be closed or not, when the connection is destroyed. Closing the socket forbids further
connections on the same port with the socket-accept-connection procedure. Omitting a value for close
implies closing the socket. The return value of socket-shutdown is undefined. The following example shows
a simple server: when there is a new connection on the port number 1234, the server displays the first line
sent to it by the client, discards the others and goes back waiting for further client connections.

(let ((s (make-server-socket 1234)))

(let loop ()

(socket-accept-connections)

(format #t "I’ve read: ~A\n" (read-line (socket-input s)))

(socket-shutdown s #f)

(loop)))

(socket-down? socket)(socket-down? socket)(socket-down? socket)

Returns #t if socket has been previously closed with socket-shutdown. It returns #f otherwise.

(socket-dup socket)(socket-dup socket)(socket-dup socket)

Returns a copy of socket. The original and the copy socket can be used interchangeably. However, if a new
connection is accepted on one socket, the characters exchanged on this socket are not visible on the other
socket. Duplicating a socket is useful when a server must accept multiple simultaneous connections. The
following example creates a server listening on port 1234. This server is duplicated and, once two clients are
present, a message is sent on both connections.

(define s1 (make-server-socket 1234))

(define s2 (socket-dup s1))

(socket-accept-connection s1)

(socket-accept-connection s2) ;; blocks until two clients are present

(display "Hello,\n" (socket-output s1))

(display "world\n" (socket-output s2))

(flush (socket-output s1))

(flush (socket-output s2))
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(when-socket-ready socket handler)(when-socket-ready socket handler)(when-socket-ready socket handler)

(when-socket-ready socket)(when-socket-ready socket)(when-socket-ready socket)

Defines a handler for socket. The handler is a thunk which is executed when a connection is available
on socket. If the special value #f is provided as handler, the current handler for socket is deleted. If
a handler is provided, the value returned by when-socket-ready is undefined. Otherwise, it returns the
handler currently associated to socket. This procedure, in conjunction with socket-dup, permits building
multiple-client servers which work asynchronously. Such a server is shown below.

(define p (make-server-socket 1234))

(when-socket-ready p

(let ((count 0))

(lambda ()

(set! count (+ count 1))

(register-connection (socket-dup p) count))))

(define register-connection

(let ((sockets ’()))

(lambda (s cnt)

;; Accept connection

(socket-accept-connection s)

;; Save socket somewhere to avoid GC problems

(set! sockets (cons s sockets))

;; Create a handler for reading inputs from this new connection

(let ((in (socket-input s))

(out (socket-output s)))

(when-port-readable in

(lambda ()

(let ((l (read-line in)))

(if (eof-object? l)

;; delete current handler

(when-port-readable in #f)

;; Just write the line read on the socket

(begin (format out "On #~A --> ~A\n" cnt l)

(flush out))))))))))
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• Concurrency

To work with the ideas in this section you should first

(load "~cs61a/lib/concurrent.scm")

in order to get the necessary Scheme extensions.

Parallelism

Many things we take for granted in ordinary programming become problematic when there is any kind of
parallelism involved. These situations include

• multiple processors (hardware) sharing data

• software multithreading (simulated parallelism)

• operating system input/output device handlers

This is the most important topic in CS 162, the operating systems course; here in 61A we give only a brief
introduction, in the hope that when you see this topic for the second time it’ll be clearer as a result.

To see in simple terms what the problem is, think about the Scheme expression

(set! x (+ x 1))

As you’ll learn in more detail in 61C, Scheme translates this into a sequence of instructions to your computer.
The details depend on the particular computer model, but it’ll be something like this:

lw $8, x ; Load a Word from memory location x

; into processor register number 8.

addi $8, 1 ; Add the Immediate value 1 to the register.

sw $8, x ; Store the Word from register 8 back

; into memory location x.

Ordinarily we would expect this sequence of instructions to have the desired effect. If the value of x was 100
before these instructions, it should be 101 after them.

But imagine that this sequence of three instructions can be interrupted by other events that come in the
middle. To be specific, let’s suppose that someone else is also trying to add 1 to x’s value. Now we might
have this sequence:

my process other process

---------- -------------

lw $8, x [value is 100]

addi $8, 1 [value is 101]

lw $9, x [value is 100]

addi $9, 1 [value is 101]

sw $9, x [stores 101]

sw $8, x [stores 101]

The ultimate value of x will be 101, instead of the correct 102.

The general idea we need to solve this problem is the critical section, which means a sequence of instructions
that mustn’t be interrupted. The three instructions starting with the load and ending with the store are a
critical section.
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Actually, we don’t have to say that these instructions can’t be interrupted; the only condition we must
enforce is that they can’t be interrupted by another process that uses the variable x. It’s okay if another
process wants to add 1 to y meanwhile. So we’d like to be able to say something like

reserve x

lw $8, x

addi $8, 1

sw $8, x

release x

Levels of Abstraction

Computers don’t really have instructions quite like reserve and release, but we’ll see that they do provide
similar mechanisms. A typical programming environment includes concurrency control mechanisms at three
levels of abstraction:

SICP name What’s protected Provided by

--------- ---------------- -----------

serializer high level abstraction programming language

(procedure, object, ...)

mutex critical section operating system

test-and-set! one atomic hardware

state transition

The serializer and the mutex are, in SICP, abstract data types. There is a constructor make-serializer

that’s implemented using a mutex, and a constructor make-mutex that’s implemented using test-and-set!,
which is a (simulated, in our case) hardware instruction.

Serializers

For now, let’s look at how this idea can be expressed at a higher level of abstraction, in a Scheme program.

(define x-protector (make-serializer))

(define protected-increment-x (x-protector (lambda () (set! x (+ x 1)))))

> x

100

> (protected-increment-x)

> x

101

We introduce an abstraction called a serializer. This is a procedure that takes as its argument another
procedure (call it proc). The serializer returns a new procedure (call it protected-proc). When invoked,
protected-proc invokes proc, but only if the same serializer is not already in use by another protected
procedure. Proc can have any number of arguments, and protected-proc will take the same arguments
and return the same value.

There can be many different serializers, all in operation at once, but each one can’t be doing two things at
once. So if we say

(define x-protector (make-serializer))

(define y-protector (make-serializer))
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(parallel-execute (x-protector (lambda () (set! x (+ x 1))))

(y-protector (lambda () (set! y (+ y 1)))))

then both tasks can run at the same time; it doesn’t matter how their machine instructions are interleaved.
But if we say

(parallel-execute (x-protector (lambda () (set! x (+ x 1))))

(x-protector (lambda () (set! x (+ x 1)))))

then, since we’re using the same serializer in both tasks, the serializer will ensure that they don’t overlap in
time.

I’ve introduced a new primitive procedure, parallel-execute. It takes any number of arguments, each of
which is a procedure of no arguments, and invokes them them, in parallel rather than in sequence. (This
isn’t a standard part of Scheme, but an extension for this section of the textbook.)

You may be wondering about the need for all those (lambda ()...) notations. Since a serializer isn’t a
special form, it can’t take an expression as argument. Instead we must give it a procedure that it can invoke.

Programming Considerations

Even with serializers, it’s not easy to do a good job of writing programs that deal successfully with concur-
rency. In fact, all of the operating systems in widespread use today have bugs in this area; Unix systems,
for example, are expected to crash every month or two because of concurrency bugs.

To make the discussion concrete, let’s think about an airline reservation system, which serves thousands of
simultaneous users around the world. Here are the things that can go wrong:

• Incorrect results. The worst problem is if the same seat is reserved for two different people. Just as
in the case of adding 1 to x, the reservation system must first find a vacant seat, then mark that seat as
occupied. That sequence of reading and then modifying the database must be protected.

• Inefficiency. One very simple way to ensure correct results is to use a single serializer to protect the entire
reservation database, so that only one person could make a request at a time. But this is an unacceptable
solution; thousands of people are waiting to reserve seats, mostly not for the same flight.

• Deadlock. Suppose that someone wants to travel to a city for which there is no direct flight. We must
make sure that we can reserve a seat on flight A and a seat on connecting flight B on the same day, before
we commit to either reservation. This probably means that we need to use two serializers at the same time,
one for each flight. Suppose we say something like

(serializer-A (serializer-B (lambda () ...))))

Meanwhile someone else says

(serializer-B (serializer-A (lambda () ...))))

The timing could work out so that we get serializer A, the other person gets serializer B, and then we are
each stuck waiting for the other one.

• Unfairness. This isn’t an issue in every situation, but sometimes you want to avoid a solution to the
deadlock problem that always gives a certain process priority over some other one. If the high-priority
process is greedy, the lower-priority process might never get its turn at the shared data.
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Implementing Serializers

A serializer is a high-level abstraction. How do we make it work? Here is an incorrect attempt to implement
serializers:

;;;;; In file cs61a/lectures/3.4/bad-serial.scm

(define (make-serializer)

(let ((in-use? #f))

(lambda (proc)

(define (protected-proc . args)

(if in-use?

(begin

(wait-a-while) ; Never mind how to do that.

(apply protected-proc args)) ; Try again.

(begin

(set! in-use? #t) ; Don’t let anyone else in.

(apply proc args) ; Call the original procedure.

(set! in-use? #f)))) ; Finished, let others in again.

protected-proc)))

This is a little complicated, so concentrate on the important parts. In particular, never mind about the
scheduling aspect of parallelism—how we can ask this process to wait a while before trying again if the
serializer is already in use. And never mind the stuff about apply, which is needed only so that we can
serialize procedures with any number of arguments.

The part to focus on is this:

(if in-use?

....... ; wait and try again

(begin

(set! in-use #t) ; Don’t let anyone else in.

(apply proc args) ; Call the original procedure.

(set! in-use #f))) ; Finished, let others in again.

The intent of this code is that it first checks to see if the serializer is already in use. If not, we claim the
serializer by setting in-use true, do our job, and then release the serializer.

The problem is that this sequence of events is subject to the same parallelism problems as the procedure
we’re trying to protect! What if we check the value of in-use, discover that it’s false, and right at that
moment another process sneaks in and grabs the serializer? In order to make this work we’d have to have
another serializer protecting this one, and a third serializer protecting the second one, and so on.

There is no easy way to avoid this problem by clever programming tricks within the competing processes. We
need help at the level of the underlying machinery that provides the parallelism: the hardware and/or the
operating system. That underlying level must provide a guaranteed atomic operation with which we can
test the old value of in-use and change it to a new value with no possibility of another process intervening.
(It turns out that there is a very tricky software algorithm to generate guaranteed atomic test-and-set, but
in practice, there is almost always hardware support for parallelism. Look up “Peterson’s algorithm” in
Wikipedia if you want to see the software solution.)

The textbook assumes the existence of a procedure called test-and-set! with this guarantee of atomicity.
Although there is a pseudo-implementation on page 312, that procedure won’t really work, for the same
reason that my pseudo-implementation of make-serializer won’t work. What you have to imagine is
that test-and-set! is a single instruction in the computer’s hardware, comparable to the Load Word
instructions and so on that I started with. (This is a realistic assumption; modern computers do provide
some such hardware mechanism, precisely for the reasons we’re discussing now.)
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The Mutex

The book uses an intermediate level of abstraction between the serializer and the atomic hardware capability,
called a mutex. What’s the difference between a mutex and a serializer? The serializer provides, as an
abstraction, a protected operation, without requiring the programmer to think about the mechanism by
which it’s protected. The mutex exposes the sequence of events. Just as my incorrect implementation said

(set! in-use #t)

(apply proc args)

(set! in-use #f)

the correct version uses a similar sequence

(mutex ’acquire)

(apply proc args)

(mutex ’release)

By the way, all of the versions in these notes have another bug; I’ve simplified the discussion by ignoring
the problem of return values. We want the value returned by protected-proc to be the same as the
value returned by the original proc, even though the call to proc isn’t the last step. Therefore the correct
implementation is

(mutex ’acquire)

(let ((result (apply proc args)))

(mutex ’release)

result)

as in the book’s implementation on page 311.
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CS 61A Lecture Notes Week 11

Topic: Streams

Reading: Abelson & Sussman, Section 3.5.1–3, 3.5.5

Streams are an abstract data type, not so different from rational numbers, in that we have constructors and
selectors for them. But we use a clever trick to achieve tremendously magical results. As we talk about the
mechanics of streams, there are three big ideas to keep in mind:

• Efficiency: Decouple order of evaluation from the form of the program.

• Infinite data sets.

• Functional representation of time-varying information (versus OOP).

You’ll understand what these all mean after we look at some examples.

How do we tell if a number n is prime? Never mind computers, how would you express this idea as a
mathematician? Something like this: “N is prime if it has no factors in the range 2 ≤ f < n.”

So, to implement this on a computer, we should

• Get all the numbers in the range [2, n− 1].

• See which of those are factors of n.

• See if the result is empty.

;;;;; In file cs61a/lectures/3.5/prime1.scm

(define (prime? n)

(null? (filter (lambda (x) (= (remainder n x) 0))

(range 2 (- n 1)))))

But we don’t usually program it that way. Instead, we write a loop:

;;;;; In file cs61a/lectures/3.5/prime0.scm

(define (prime? n)

(define (iter factor)

(cond ((= factor n) #t)

((= (remainder n factor) 0) #f)

(else (iter (+ factor 1)))))

(iter 2))

(Never mind that we can make small optimizations like only checking for factors up to
√

n. Let’s keep it
simple.)

Why don’t we write it the way we expressed the problem in words? The problem is one of efficiency. Let’s
say we want to know if 1000 is prime. We end up constructing a list of 998 numbers and testing all of them
as possible factors of 1000, when testing the first possible factor would have given us a false result quickly.
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The idea of streams is to let us have our cake and eat it too. We’ll write a program that looks like the first
version, but runs like the second one. All we do is change the second version to use the stream ADT instead
of the list ADT:

;;;;; In file cs61a/lectures/3.5/prime2.scm

(define (prime? n)

(stream-null? (stream-filter (lambda (x) (= (remainder n x) 0))

(stream-range 2 (- n 1)))))

The only changes are stream-range instead of range, stream-null? instead of null?, and stream-filter

instead of filter.

How does it work? A list is implemented as a pair whose car is the first element and whose cdr is the rest
of the elements. A stream is almost the same: It’s a pair whose car is the first element and whose cdr is a
promise to compute the rest of the elements later.

For example, when we ask for the range of numbers [2, 999] what we get is a single pair whose car is 2 and
whose cdr is a promise to compute the range [3, 999]. The function stream-range returns that single pair.
What does stream-filter do with it? Since the first number, 2, does satisfy the predicate, stream-filter
returns a single pair whose car is 2 and whose cdr is a promise to filter the range [3, 999]. Stream-filter
returns that pair. So far no promises have been “cashed in.” What does stream-null? do? It sees that its
argument stream contains the number 2, and maybe contains some more stuff, although maybe not. But at
least it contains the number 2, so it’s not empty. Stream-null? returns #f right away, without computing
or testing any more numbers.

Sometimes (for example, if the number we’re checking is prime) you do have to cash in the promises. If so,
the stream program still follows the same order of events as the original loop program; it tries one number
at a time until either a factor is found or there are no more numbers to try.

Summary: What we’ve accomplished is to decouple the form of a program—the order in which computations
are presented—from the actual order of evaluation. This is one more step on the long march that this whole
course is about, i.e., letting us write programs in language that reflects the problems we’re trying to solve
instead of reflecting the way computers work.
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• Implementation. How does it work? The crucial point is that when we say something like

(cons-stream from (stream-range (+ from 1) to))

(inside stream-range) we can’t actually evaluate the second argument to cons-stream. That would defeat
the object, which is to defer that evaluation until later (or maybe never). Therefore, cons-stream has to
be a special form. It has to cons its first argument onto a promise to compute the second argument. The
expression

(cons-stream a b)

is equivalent to

(cons a (delay b))

Delay is itself a special form, the one that constructs a promise. Promises could be a primitive data type,
but since this is Scheme, we can represent a promise as a function. So the expression

(delay b)

really just means

(lambda () b)

We use the promised expression as the body of a function with no arguments. (A function with no arguments
is called a thunk.)

Once we have this mechanism, we can use ordinary functions to redeem our promises:

(define (force promise) (promise))

and now we can write the selectors for streams:

(define (stream-car stream) (car stream))

(define (stream-cdr stream) (force (cdr stream)))

Notice that forcing a promise doesn’t compute the entire rest of the job at once, necessarily. For example,
if we take our range [2, 999] and ask for its tail, we don’t get a list of 997 values. All we get is a pair whose
car is 3 and whose cdr is a new promise to compute [4, 999] later.

The name for this whole technique is lazy evaluation or call by need.

• Reordering and functional programming. Suppose your program is written to include the following sequence
of steps:

...

(set! x 2)

...

(set! y (+ x 3))

...

(set! x 7)

...

Now suppose that, because we’re using some form of lazy evaluation, the actual sequence of events is
reordered so that the third set! happens before the second one. We’ll end up with the wrong value for
y. This example shows that we can only get away with below-the-line reordering if the above-the-line
computation is functional.

(Why isn’t it a problem with let? Because let doesn’t mutate the value of one variable in one environment.
It sets up a local environment, and any expression within the body of the let has to be computed within
that environment, even if things are reordered.)
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• Memoization of streams. Delay is really slightly more complicated than what’s shown above. It returns a
procedure of no arguments that memoizes the promise; the expression given as delay’s argument is evaluated
only the first time this promise is forced; after that, the value is remembered and reused. This is another
reason why streams are a functional-only technique; any mutation operation in a promise will only happen
once even if you cash in the promise repeatedly.

• Infinite streams. Think about the plain old list function

(define (range from to)

(if (> from to)

’()

(cons from (range (+ from 1) to)) ))

When we change this to a stream function, we change very little in the appearance of the program:

(define (stream-range from to)

(if (> from to)

THE-EMPTY-STREAM

(cons-STREAM from (stream-range (+ from 1) to)) ))

but this tiny above-the-line change makes an enormous difference in the actual behavior of the program.

Now let’s cross out the second argument and the end test:

(define (stream-range from)

(cons-stream from (stream-range (+ from 1))) )

This is an enormous above-the-line change! We now have what looks like a recursive function with no base
case—an infinite loop. And yet there is hardly any difference at all in the actual behavior of the program.
The old version computed a range such as [2, 999] by constructing a single pair whose car is 2 and whose
cdr is a promise to compute [3, 999] later. The new version computes a range such as [2,∞] by constructing
a single pair whose car is 2 and whose cdr is a promise to compute [3,∞] later!

This amazing idea lets us construct even some pretty complicated infinite sets, such as the set of all the
prime numbers. (Explain the sieve of Eratosthenes. The program is in the book so it’s not reproduced here.)

• Time-varying information. Functional programming works great for situations in which we are looking for
a timeless answer to some question. That is, the same question always has the same answer regardless of
events in the world. We invented OOP because functional programming didn’t let us model changing state.
But with streams we can model state functionally. We can say

(define (user-stream)

(cons-stream (read) (user-stream)) )

and this gives us the stream of everything the user is going to type from now on. Instead of using local state
variables to remember the effect of each thing the user types, one at a time, we can write a program that
computes the result of the (possibly infinite) collection of user requests all at once! This feels really bizarre,
but it does mean that purely functional programming languages can handle user interaction. We don’t need

OOP.

Note: The third midterm exam is next week.
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CS 61A Lecture Notes Week 12

Topic: Metacircular evaluator

Reading: Abelson & Sussman, Section 4.1

Midterm 3 is this week.

We’re going to investigate SICP’s Scheme interpreter written in Scheme. This interpreter implements the
environment model of evaluation.

Here’s a reminder of the reasons I mentioned in week 6 for studying a Scheme interpreter in Scheme, even
though it’s obviously not something you’d use in practice:

• It helps you understand the environment model.

• It lets us experiment with modifications to Scheme (new features).

• Even real Scheme interpreters are largely written in Scheme.

• It illustrates a big idea: universality.

Universality means we can write one program that’s equivalent to all other programs. At the hardware level,
this is the idea that made general-purpose computers possible. It used to be that they built a separate
machine, from scratch, for every new problem. An intermediate stage was a machine that had a patchboard

so you could rewire it, effectively changing it into a different machine for each problem, without having to
re-manufacture it. The final step was a single machine that accepted a program as data so that it can do
any problem without rewiring.

Instead of a function machine that computes a particular function, taking (say) a number in the input hopper
and returning another number out the bottom, we have a universal function machine that takes a function

machine in one input hopper, and a number in a second hopper, and returns whatever number the input
machine would have returned. This is the ultimate in data-directed programming.

Our Scheme interpreter leaves out some of the important components of a real one. It gets away with this
by taking advantage of the capabilities of the underlying Scheme. Specifically, we don’t deal with storage
allocation, tail recursion elimination, or implementing any of the Scheme primitives. All we do deal with is
the evaluation of expressions. That turns out to be quite a lot in itself, and pretty interesting.
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Here is a one-screenful version of the metacircular evaluator with most of the details left out. You might
want to compare it to the one-screenful substitution-model interpreter you saw in week 6.

;;;;; In file cs61a/lectures/4.1/micro.scm

(define (scheme)

(display "> ")

(print (eval (read) the-global-environment))

(scheme) )

(define (eval exp env)

(cond ((self-evaluating? exp) exp)

((symbol? exp) (lookup-in-env exp env))

((special-form? exp) (do-special-form exp env))

(else (apply (eval (car exp) env)

(map (lambda (e) (eval e env)) (cdr exp)) ))))

(define (apply proc args)

(if (primitive? proc)

(do-magic proc args)

(eval (body proc)

(extend-environment (formals proc)

args

(proc-env proc) ))))

Although the version in the book is a lot bigger, this really does capture the essential structure, namely,
a mutual recursion between eval (evaluate an expression relative to an environment) and apply (apply a
function to arguments). To evaluate a compound expression means to evaluate the subexpressions recursively,
then apply the car (a function) to the cdr (the arguments). To apply a function to arguments means to
evaluate the body of the function in a new environment.

What’s left out? Primitives, special forms, and a lot of details.

In that other college down the peninsula, they wouldn’t consider you ready for an interpreter until junior or
senior year. At this point in the introductory course, they’d still be teaching you where the semicolons go.
How do we get away with this? We have two big advantages:

• The source language (the language that we’re interpreting) is simple and uniform. Its entire formal syntax
can be described in one page, as we did in week 7. There’s hardly anything to implement!

• The implementation language (the one in which the interpreter itself is written) is powerful enough to
handle a program as data, and to let us construct data structures that are both hierarchical and circular.

The amazing thing is that the simple source language and the powerful implementation language are both
Scheme! You might think that a powerful language has to be complicated, but it’s not so.
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• Introduction to Logo. For the programming project you’re turning the metacircular evaluator into an
interpreter for a different language, Logo. To do that you should know a little about Logo itself.

Logo is a dialect of Lisp, just as Scheme is, but its design has different priorities. The goal was to make it
as natural-seeming as possible for kids. That means things like getting rid of all those parentheses, and that
has other syntactic implications.

(To demonstrate Logo, run ~cs61a/logo which is Berkeley Logo.)

Commands and operations: In Scheme, every procedure returns a value, even the ones for which the value is
unspecified and/or useless, like define and print. In Logo, procedures are divided into operations, which
return values, and commands, which don’t return values but are called for their effect. You have to start
each instruction with a command:

print sum 2 3

Syntax: If parentheses aren’t used to delimit function calls, how do you know the difference between a
function and an argument? When a symbol is used without punctuation, that means a function call. When
you want the value of a variable to use as an argument, you put colon in front of it.

make "x 14

print :x

print sum :x :x

Words are quoted just as in Scheme, except that the double-quote character is used instead of single-quote.
But since expressions aren’t represented as lists, the same punctuation that delimits a list also quotes it:

print [a b c]

(Parentheses can be used, as in Scheme, if you want to give extra arguments to something, or indicate infix
precedence.)

print (sum 2 3 4 5)

print 3*(4+5)

No special forms: Except to, the thing that defines a new procedure, all Logo primitives evaluate their
arguments. How is this possible? We “proved” back in chapter 1 that if has to be a special form. But
instead we just quote the arguments to ifelse:

ifelse 2=3 [print "hi] [print "bye]

You don’t notice the quoting since you get it for free with the list grouping.

Functions not first class: In Logo every function has a name; there’s no lambda. Also, the namespace
for functions is separate from the one for variables; a variable can’t have a function as its value. (This
is convenient because we can use things like list or sentence as formal parameters without losing the
functions by those names.) That’s another reason why you need colons for variables.

So how do you write higher-order functions like map? Two answers. First, you can use the name of a function
as an argument, and you can use that name to construct an expression and eval it with run. Second, Logo
has first-class expressions ; you can run a list that you get as an argument. (This raises issues about the
scope of variables that we’ll explore later this week.)

print map "first [the rain in spain]

print map [? * ?] [3 4 5 6]
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• Data abstraction in the evaluator. Here is a quote from the Instructor’s Manual, regarding section 4.1.2:

“Point out that this section is boring (as is much of section 4.1.3), and explain why: Writing the selectors,
constructors, and predicates that implement a representation is often uninteresting. It is important to say
explicitly what you expect to be boring and what you expect to be interesting so that students don’t ascribe
their boredom to the wrong aspect of the material and reject the interesting ideas. For example, data
abstraction isn’t boring, although writing selectors is. The details of representing expressions (as given in
section 4.1.2) and environments (as given in section 4.1.3) are mostly boring, but the evaluator certainly
isn’t.”

I actually think they go overboard by having a separate ADT for every kind of homogeneous sequence. For
example, instead of first-operand and rest-operands I’d just use first and rest for all sequences. But
things like operator and operands make sense.

• Dynamic scope. Logo uses dynamic scope, which we discussed in Section 3.2, instead of Scheme’s lexical
scope. There are advantages and disadvantages to both approaches.

Summary of arguments for lexical scope:

• Allows local state variables (OOP).

• Prevents name “capture” bugs.

• Faster compiled code.

Summary of arguments for dynamic scope:

• Allows first-class expressions (WHILE).

• Easier debugging.

• Allows “semi-global” variables.

Lexical scope is required in order to make possible Scheme’s approach to local state variables. That is, a
procedure that has a local state variable must be defined within the scope where that variable is created,
and must carry that scope around with it. That’s exactly what lexical scope accomplishes.

On the other hand, (1) most lexically scoped languages (e.g., Pascal) don’t have lambda, and so they can’t
give you local state variables despite their lexical scope. And (2) lexical scope is needed for local state
variables only if you want to implement the latter in the particular way that we’ve used. Object Logo, for
example, provides OOP without relying on lambda because it includes local state variables as a primitive
feature.

Almost all computer scientists these days hate dynamic scope, and the reason they give is the one about
name captures. That is, suppose we write procedure P that refers to a global variable V. Example:

(define (area rad)

(* pi rad rad))

This is intended as a reference to a global variable pi whose value, presumably, is 3.141592654. But suppose
we invoke it from within another procedure like this:

(define (mess-up pi)

(area (+ pi 5)))

If we say (mess-up 4) we intend to find the area of a circle with radius 9. But we won’t get the right area
if we’re using dynamic scope, because the name pi in procedure area suddenly refers to the local variable
in mess-up, rather than to the intended global value.
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This argument about naming bugs is particularly compelling to people who envision a programming project
in which 5000 programmers work on tiny slivers of the project, so that nobody knows what anyone else is
doing. In such a situation it’s entirely likely that two programmers will happen to use the same name for
different purposes. But note that we had to do something pretty foolish—using the name pi for something
that isn’t π at all—in order to get in trouble.

Lexical scope lets you write compilers that produce faster executable programs, because with lexical scope
you can figure out during compilation exactly where in memory any particular variable reference will be.
With dynamic scope you have to defer the name-location correspondence until the program actually runs.
This is the real reason why people prefer lexical scope, despite whatever they say about high principles.

As an argument for dynamic scope, consider this Logo implementation of the while control structure:

to while :condition :action

if not run :condition [stop]

run :action

while :condition :action

end

to example :x

while [:x > 0] [print :x make "x :x-1]

end

? example 3

3

2

1

This wouldn’t work with lexical scope, because within the procedure whilewe couldn’t evaluate the argument
expressions, because the variable x is not bound in any environment lexically surrounding while. Dynamic
scope makes the local variables of example available to while. That in turn allows first-class expressions.
(That’s what Logo uses in place of first-class functions.)

There are ways to get around this limitation of lexical scope. If you wanted to write while in Scheme,
basically, you’d have to make it a special form that turns into something using thunks. That is, you’d have
to make

(while cond act)

turn into

(while-helper (lambda () cond) (lambda () act))

But the Logo point of view is that it’s easier for a beginning programmer to understand first-class expressions
than to understand special forms and thunks.

Most Scheme implementations include a debugger that allows you to examine the values of variables after
an error. But, because of the complexity of the scope rules, the debugging language isn’t Scheme itself.
Instead you have to use a special language with commands like “switch to the environment of the procedure
that called this one.” In Logo, when an error happens you can pause your program and type ordinary Logo
expressions in an environment in which all the relevant variables are available. For example, here is a Logo
program:
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;;;;; In file cs61a/lectures/4.1/bug.logo

to assq :thing :list

if equalp :thing first first :list [op last first :list]

op assq :thing bf :list

end

to spell :card

pr (se assq bl :card :ranks "of assq last :card :suits)

end

to hand :cards

if emptyp :cards [stop]

spell first :cards

hand bf :cards

end

make "ranks [[a ace] [2 two] [3 three] [4 four] [5 five] [6 six] [7 seven]

[8 eight] [9 nine] [10 ten] [j jack] [q queen] [k king]]

make "suits [[h hearts] [s spades] [d diamonds] [c clubs]]

? hand [10h 2d 3s]

TEN OF HEARTS

TWO OF DIAMONDS

THREE OF SPADES

Suppose we introduce an error into hand by changing the recursive call to

hand first bf :cards

The result will be an error message in assq—two procedure calls down—complaining about an empty
argument to first. Although the error is caught in assq, the real problem is in hand. In Logo we can say
pons, which stands for “print out names,” which means to show the values of all variables accessible at the
moment of the error. This will include the variable cards, so we’ll see that the value of that variable is a
single card instead of a list of cards.

Finally, dynamic scope is useful for allowing “semi-global” variables. Take the metacircular evaluator as
an example. Lots of procedures in it require env as an argument, but there’s nothing special about the
value of env in any one of those procedures. It’s almost always just the current environment, whatever
that happens to be. If Scheme had dynamic scope, env could be a parameter of eval, and it would then
automatically be available to any subprocedure called, directly or indirectly, by eval. (This is the flip side
of the name-capturing problem; in this case we want eval to capture the name env.)

• Environments as circular lists. When we first saw circular lists in chapter 2, they probably seemed to be
an utterly useless curiosity, especially since you can’t print one. But in the MC evaluator, every environment
is a circular list, because the environment contains procedures and each procedure contains a pointer to
the environment in which it’s defined. So, moral number 1 is that circular lists are useful; moral number 2
is not to try to trace a procedure in the evaluator that has an environment as an argument! The tracing
mechanism will take forever to try to print the circular argument list.
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• Mapreduce part 2

Here’s the diagram of mapreduce again:
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The seemingly unpoetic names f1 and f2 serve to remind you of two things: f1 (the mapper) is used before
f2 (the reducer), and f1 takes one argument while f2 takes two arguments (just like the functions used with
ordinary map and accumulate respectively).
mapper: kv-pair → list-of-kv-pairs

reducer: value, partial-result → result

All data are in the form of key-value pairs. Ordinary map doesn’t care what the elements of the data
list argument are, but mapreduce works only with data each of which is a key-value pair. In the Scheme
interface to the distributed filesystem, a file is a stream. Every element of the file stream represents one line
of the file, using a key-value pair whose key is the filename and whose value is a list of words, representing
the text of the line. The cdr of a file stream is a promise to ask the distributed filesystem for the next line.

Each processor runs a separate stream-map. The overlapping squares at the left of the mapreduce
picture represent an entire stream. (How is a large distributed file divided among map processes? It doesn’t
really matter, as far as the mapreduce user is concerned; mapreduce tries to do it as efficiently as possible
given the number of processes and the location of the data in the filesystem.) The entire stream is the input
to a map process; each element of the stream (a kv-pair) is the input to your mapper function f1.

For each key-value pair in the input stream, the mapper returns a list of key-value pairs. In
the simplest case, each of these lists will have one element; the code will look something like

(define (my-mapper input-kv-pair)

(list (make-kv-pair ... ...)))

The interface requires that you return a list to allow for the non-simplest cases: (1) Each input key-value
pair may give rise to more than one output key-value pair. For example, you may want an output key-value
pair for each word of the input file, whereas the input key-value pair represents an entire line:

(define (my-mapper input-kv-pair)

(map (lambda (wd) (make-kv-pair ... ...))

(kv-value input-kv-pair)))

(2) There are three commonly used higher order functions for sequential data, map, accumulate/reduce,
and filter. The way mapreduce handles the sort of problem for which filter would ordinarily be used is
to allow a mapper to return an empty list if this particular key-value pair shouldn’t contribute to the result:
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(define (my-mapper input-kv-pair)

(if ...

(list input-kv-pair)

’()))

Of course it’s possible to write mapper functions that combine these three patterns for more complicated
tasks.

The keys in the kv-pairs returned by the mapper need not be the same as the key in the input kv-pair.

Instead of one big accumulation, there’s a separate accumulation of values for each key. The
non-parallel computation in the left half of the picture has two steps, a map and an accumulate. But the
mapreduce computation has three steps; the middle step sorts all the key-value pairs produced by all the
mapper processes by their keys, and combines all the kv-pairs with the same key into a single aggregate
structure, which is then used as the input to a reduce process.

This is why the use of key-value pairs is important! If the data had no such structure imposed on them,
there would be no way for us to tell mapreduce which data should be combined in each reduction.

Although it’s shown as one big box, the sort is also done in parallel; it’s a “bucket sort,” in which each
map process is responsible for sending each of its output kv-pairs to the proper reduce process. (Don’t be
confused; your mapper function doesn’t have to do that. The mapreduce program takes care of it.)

Since all the data seen by a single reduce process have the same key, the reducer doesn’t deal with keys at
all. This is important because it allows us to use simple reducer functions such as +, *, max, etc. The Scheme
interface to mapreduce recognizes the special cases of cons and cons-stream as reducers and does what you
intend, even though it wouldn’t actually work without this special handling, both because cons-stream is a
special form and because the iterative implementation of mapreduce would do the combining in the wrong
order.

In the underlying mapreduce software, each reduce process leaves its results in a separate file, stored on the
particular processor that ran the process. But the Scheme interface to mapreduce returns a single value, a
stream that effectively merges the results from all the reduce processes.
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Running mapreduce: The mapreduce function is not available on the standard lab machines. You must
connect to the machine that controls the parallel cluster. To do this, from the Unix shell you say this:

ssh icluster1.eecs.berkeley.edu

If you’re at home, rather than in the lab, you’ll have to provide your class login to the ssh command:

ssh cs61a-XY@icluster.eecs.berkeley.edu

replacing XY above with your login account. Ssh will ask for your password, which is the same on the parallel
cluster as for your regular class account. Once you are logged into icluster1, you can run stk as usual,
but mapreduce will be available:

(mapreduce mapper reducer reducer-base-case filename-or-special-stream)

The first three arguments are the mapper function for the map phase, and the reducer function and starting
value for the reduce phase. The last argument is the data input to the map, but it is restricted to be either
a distributed filesystem folder, which must be one of these:

"/beatles-songs" This one is small and has all Beatles song names
"/gutenberg/shakespeare" The collected works of William Shakespeare
"/gutenberg/dickens" The collected works of Charles Dickens
"/sample-emails" Some sample email data for the homework
"/large-emails" A much larger sample email dataset. Use this only

if you’re willing to wait a while.

(the quotation marks above are required), or the stream returned by an earlier call to mapreduce. (Streams
you make yourself with cons-stream, etc., can’t be used.) Some problems are solved with two mapreduce

passes, like this:

(define intermediate-result (mapreduce ...))

(mapreduce ... intermediate-result)

(Yes, you could just use one mapreduce call directly as the argument to the second mapreduce call, but in
practice you’ll want to use show-stream to examine the intermediate result first, to make sure the first call
did what you expect.)

Here’s a sample. We provide a file of key-value pairs in which the key is the name of a Beatles album and the
value is the name of a song on that album. Suppose we want to know how many times each word appears
in the name of a song:

(define (wordcount-mapper document-line-kv-pair)

(map (lambda (wd-in-line) (make-kv-pair wd-in-line 1))

(kv-value document-line-kv-pair)))

(define wordcounts (mapreduce wordcount-mapper + 0 "/beatles-songs"))

> (ss wordcounts)

The argument to wordcount-mapper will be a key-value pair whose key is an album name, and whose value
is a song name. (In other examples, the key will be a filename, such as the name of a play by Shakespeare,
and the value will be a line from the play.) We’re interested only in the song names, so there’s no call to
kv-key in the procedure. For each song name, we generate a list of key-value pairs in which the key is a
word in the name and the value is 1. This may seem silly, having the same value in every pair, but it means
that in the reduce stage we can just use + as the reducer, and it’ll add up all the occurrences of each word.

You’ll find the running time disappointing in this example; since the number of Beatles songs is pretty
small, the same computation could be done faster on a single machine. This is because there is a significant
setup time both for mapreduce itself and for the stk interface. Since your mapper and reducer functions
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have to work when run on parallel machines, your Scheme environment must be shipped over to each of
those machines before the computation begins, so that bindings are available for any free references in your
procedures. It’s only for large amounts of data (or long computations that aren’t data-driven, such as
calculating a trillion digits of π, but mapreduce isn’t really appropriate for those examples) that parallelism
pays off.

By the way, if you want to examine the input file, you can’t just say

(ss "/beatles-songs") ; NO

because a distributed filename isn’t a stream, even though the file itself is (when viewed by the stk interface
to mapreduce) a stream. These filenames only work as arguments to mapreduce itself. But we can use
mapreduce to examine the file by applying null transformations in the map and reduce stages:

(ss (mapreduce list cons-stream the-empty-stream "/beatles-songs"))

The mapper function is list because the mapper must always return a list of key-value pairs; in this case,
map will call list with one argument and so it’ll return a list of length one.

Now we’d like to find the most commonly used word in Beatle song titles. There are few enough words so
that we could really do this on one processor, but as an exercise in parallelism we’ll do it partly in parallel.
The trick is to have each reduce process find the most common word starting with a particular letter. Then
we’ll have 26 candidates from which to choose the absolutely most common word on one processor.

(define (find-max-mapper kv-pair)

(list (make-kv-pair (first (kv-key kv-pair))

kv-pair)))

(define (find-max-reducer current so-far)

(if (> (kv-value current) (kv-value so-far))

current

so-far))

(define frequent (mapreduce find-max-mapper find-max-reducer

(make-kv-pair ’foo 0) wordcounts))

> (ss frequent)

> (stream-accumulate find-max-reducer (make-kv-pair ’foo 0)

(stream-map kv-value frequent))

This is a little tricky. In the wordcounts stream, each key-value pair has a word as the key, and the count
for that word as the value: (back . 3). The mapper transforms this into a key-value pair in which the key
is the first letter of the word, and the value is the entire input key-value pair : (b . (back . 3)). Each
reduce process gets all the pairs with a particular key, i.e., all the ones with the same first letter of the word.
The reducer sees only the values from those pairs, but each value is itself a key-value pair! That’s why the
reducer has to compare the kv-value of its two arguments.

As another example, here’s a way to count the total number of lines in all of Shakespeare’s plays:

(define will (mapreduce (lambda (kv-pair) (list (make-kv-pair ’line 1)))

+ 0 "/gutenberg/shakespeare"))

For each line in Shakespeare, we make exactly the same pair (line . 1). Then, in the reduce stage, all
the ones in all those pairs are added. But this is actually a bad example! Since all the keys are the same
(the word line), only one reduce process is run, so the counting isn’t done in parallel. A better way would
be to count each play separately, then add those results if desired. You’ll do that in lab.
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CS 61A Lecture Notes Week 13

Topic: Analyzing evaluator

Reading:

To work with the ideas in this section you should first

(load "~cs61a/lib/analyze.scm")

in order to get the analyzing metacircular evaluator.

Inefficiency in the Metacircular Evaluator

Suppose we’ve defined the factorial function as follows:

(define (fact num)

(if (= num 0)

1

(* num (fact (- num 1)))))

What happens when we compute (fact 3)?

eval (fact 3)

self-evaluating? ==> #f if-alternative ==> (* num (fact (- num 1)))

variable? ==> #f eval (* num (fact (- num 1)))

quoted? ==> #f self-evaluating? ==> #f

assignment? ==> #f ...

definition? ==> #f list-of-values (num (fact (- num 1)))

if? ==> #f ...

lambda? ==> #f eval (fact (- num 1))

begin? ==> #f ...

cond? ==> #f apply <procedure fact> (2)

application? ==> #t eval (if (= num 0) ...)

eval fact

self-evaluating? ==> #f

variable? ==> #t

lookup-variable-value ==> <procedure fact>

list-of-values (3)

eval 3 ==> 3

apply <procedure fact> (3)

eval (if (= num 0) ...)

self-evaluating? ==> #f

variable? ==> #f

quoted? ==> #f

assignment? ==> #f

definition? ==> #f

if? ==> #t

eval-if (if (= num 0) ...)

if-predicate ==> (= num 0)

eval (= num 0)

self-evaluating? ==> #f

...

Four separate times, the evaluator has to examine the procedure body, decide that it’s an if expression, pull
out its component parts, and evaluate those parts (which in turn involves deciding what type of expression
each part is).
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This is one reason why interpreted languages are so much slower than compiled languages: The interpreter
does the syntactic analysis of the program over and over again. The compiler does the analysis once, and the
compiled program can just do the part of the computation that depends on the actual values of variables.

Separating Analysis from Execution

Eval takes two arguments, an expression and an environment. Of those, the expression argument is (obvi-
ously!) the same every time we revisit the same expression, whereas the environment will be different each
time. For example, when we compute (fact 3) we evaluate the body of fact in an environment in which
num has the value 3. That body includes a recursive call to compute (fact 2), in which we evaluate the
same body, but now in an environment with num bound to 2.

Our plan is to look at the evaluation process, find those parts which depend only on exp and not on env,
and do those only once. The procedure that does this work is called analyze.

What is the result of analyze? It has to be something that can be combined somehow with an environment
in order to return a value. The solution is that analyze returns a procedure that takes only env as an
argument, and does the rest of the evaluation.

Instead of

(eval exp env) ==> value

we now have

1. (analyze exp) ==> exp-procedure

2. (exp-procedure env) ==> value

When we evaluate the same expression again, we only have to repeat step 2. What we’re doing is akin to
memoization, in that we remember the result of a computation to avoid having to repeat it. The difference
is that now we’re remembering something that’s only part of the solution to the overall problem, instead of
a complete solution.

We can duplicate the effect of the original eval this way:

(define (eval exp env)

((analyze exp) env))

The Implementation Details

Analyze has a structure similar to that of the original eval:

(define (eval exp env) (define (analyze exp)

(cond ((self-evaluating? exp) (cond ((self-evaluating? exp)

exp) (analyze-self-eval exp))

((variable? exp) ((variable? exp)

(lookup-var-val exp env)) (analyze-var exp))

... ...

((foo? exp) (eval-foo exp env)) ((foo? exp) (analyze-foo exp))

...)) ...))

The difference is that the procedures such as eval-if that take an expression and an environment as
arguments have been replaced by procedures such as analyze-if that take only the expression as argument.
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How do these analysis procedures work? As an intermediate step in our understanding, here is a version of
analyze-if that exactly follows the structure of eval-if and doesn’t save any time:

(define (eval-if exp env)

(if (true? (eval (if-predicate exp) env))

(eval (if-consequent exp) env)

(eval (if-alternative exp) env)))

(define (analyze-if exp)

(lambda (env)

(if (true? (eval (if-predicate exp) env))

(eval (if-consequent exp) env)

(eval (if-alternative exp) env))))

This version of analyze-if returns a procedure with env as its argument, whose body is exactly the same
as the body of the original eval-if. Therefore, if we do

((analyze-if some-if-expression) some-environment)

the result will be the same as if we’d said

(eval-if some-if-expression some-environment)

in the original metacircular evaluator.

But we’d like to improve on this first version of analyze-if because it doesn’t really avoid any work. Each
time we call the procedure that analyze-if returns, it will do all of the work that the original eval-if did.

The first version of analyze-if contains three calls to eval. Each of those calls does an analysis of an
expression and then a computation of the value in the given environment. What we’d like to do is split each
of those eval calls into its two separate parts, and do the first part only once, not every time:

(define (analyze-if exp)

(let ((pproc (analyze (if-predicate exp)))

(cproc (analyze (if-consequent exp)))

(aproc (analyze (if-alternative exp))))

(lambda (env)

(if (true? (pproc env))

(cproc env)

(aproc env)))))

In this final version, the procedure returned by analyze-if doesn’t contain any analysis steps. All of the
components were already analyzed before we call that procedure, so no further analysis is needed.

The biggest gain in efficiency comes from the way in which lambda expressions are handled. In the original
metacircular evaluator, leaving out some of the data abstraction for clarity here, we have

(define (eval-lambda exp env)

(list ’procedure exp env))

The evaluator does essentially nothing for a lambda expression except to remember the procedure’s text
and the environment in which it was created. But in the analyzing evaluator we analyze the body of the
procedure; what is stored as the representation of the procedure does not include its text! Instead, the
evaluator represents a procedure in the metacircular Scheme as a procedure in the underlying Scheme, along
with the formal parameters and the defining environment.
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Level Confusion

The analyzing evaluator turns an expression such as

(if A B C)

into a procedure

(lambda (env)

(if (A-execution-procedure env)

(B-execution-procedure env)

(C-execution-procedure env)))

This may seem like a step backward; we’re trying to implement if and we end up with a procedure that
does an if. Isn’t this an infinite regress?

No, it isn’t. The if in the execution procedure is handled by the underlying Scheme, not by the metacircular
Scheme. Therefore, there’s no regress; we don’t call analyze-if for that one. Also, the if in the underlying
Scheme is much faster than having to do the syntactic analysis for the if in the meta-Scheme.

So What?

The syntactic analysis of expressions is a large part of what a compiler does. In a sense, this analyzing
evaluator is a compiler! It compiles Scheme into Scheme, so it’s not a very useful compiler, but it’s really not
that much harder to compile into something else, such as the machine language of a particular computer.

A compiler whose structure is similar to this one is called a recursive descent compiler. Today, in practice,
most compilers use a different technique (called a stack machine) because it’s possible to automate the
writing of a parser that way. (I mentioned this earlier as an example of data-directed programming.) But if
you’re writing a parser by hand, it’s easiest to use recursive descent.
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• Software reliability: the Therac failures

• 6 accidents, 4 deaths
⊲ but 100s of lives saved

• no bad guys (cf. Ford Pinto case)

• Software doesn’t degrade like hardware
⊲ but it rots anyway
⊲ but it has much greater complexity

cf. Star Wars (birth of CPSR)

• Continuum of life-or-deathness: Clearly Therac yes, clearly video game no.
But what about OS, spreadsheet, etc.?

• Therac bugs
⊲ no atomic test and set
⊲ hardware interlocks removed
⊲ UI problems:

⋆ cursor position
⋆ defaults
⋆ too many error messages

⊲ documentation
⊲ organizational response

easy to see after the fact, but problems are inherent in organizations (esp. ones that can be sued)

• Solutions
⊲ redundancy
⊲ fail soft (work despite bugs)
⊲ audit trail
⊲ Software Engineering (an attitude about programming)

⋆ Design techniques
◦ modularization (cf. OOP)
◦ understand concurrency (semaphores)
◦ analyze invariants

⋆ Verification techniques
◦ correctness proofs

(can’t be perfect because of halting theorem but still useful)
◦ automatic analysis in compiler

⋆ Debugging techniques
◦ black box vs. glass box
◦ don’t break old code with new fix
◦ introduce bugs on purpose to analyze results downstream
◦ debug by subtraction, not addition

Note: The first part of programming project 4 is this week.
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CS 61A Lecture Notes Week 14

Topic: Lazy evaluator, Nondeterministic evaluator

Reading: Abelson & Sussman, Section 4.2, 4.3

• Lazy evaluator. To load the lazy metacircular evaluator, say

(load "~cs61a/lib/lazy.scm")

Streams require careful attention

To make streams of pairs, the text uses this procedure:

;;;;; In file cs61a/lectures/4.2/pairs.scm

(define (pairs s t)

(cons-stream

(list (stream-car s) (stream-car t))

(interleave

(stream-map (lambda (x) (list (stream-car s) x))

(stream-cdr t))

(pairs (stream-cdr s) (stream-cdr t)))))

In exercise 3.68, Louis Reasoner suggests this simpler version:

(define (pairs s t)

(interleave

(stream-map (lambda (x) (list (stream-car s) x)) t)

(pairs (stream-cdr s) (stream-cdr t))))

Of course you know because it’s Louis that this doesn’t work. But why not? The answer is that interleave
is an ordinary procedure, so its arguments are evaluated right away, including the recursive call. So there is
an infinite recursion before any pairs are generated. The book’s version uses cons-stream, which is a special
form, and so what looks like a recursive call actually isn’t—at least not right away.

But in principle Louis is right! His procedure does correctly specify what the desired result should contain.
It fails because of a detail in the implementation of streams. In a perfect world, a mathematically correct
program such as Louis’s version ought to work on the computer.

In section 3.5.4 they solve a similar problem by making the stream programmer use explicit delay invocations.
(You skipped over that section because it was about calculus.) Here’s how Louis could use that technique:

(define (interleave-delayed s1 delayed-s2)

(if (stream-null? s1)

(force delayed-s2)

(cons-stream

(stream-car s1)

(interleave-delayed (force delayed-s2)

(delay (stream-cdr s1))))))

(define (pairs s t)

(interleave-delayed

(stream-map (lambda (x) (list (stream-car s) x)) t)

(delay (pairs (stream-cdr s) (stream-cdr t)))))

This works, but it’s far too horrible to contemplate; with this technique, the stream programmer has to
check carefully every procedure to see what might need to be delayed explicitly. This defeats the object of
an abstraction. The user should be able to write a stream program just as if it were a list program, without
any idea of how streams are implemented!
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Lazy evaluation: delay everything automatically

Back in chapter 1 we learned about normal order evaluation, in which argument subexpressions are not
evaluated before calling a procedure. In effect, when you type

(foo a b c)

in a normal order evaluator, it’s equivalent to typing

(foo (delay a) (delay b) (delay c))

in ordinary (applicative order) Scheme. If every argument is automatically delayed, then Louis’s pairs

procedure will work without adding explicit delays.

Louis’s program had explicit calls to force as well as explicit calls to delay. If we’re going to make this
process automatic, when should we automatically force a promise? The answer is that some primitives need
to know the real values of their arguments, e.g., the arithmetic primitives. And of course when Scheme is
about to print the value of a top-level expression, we need the real value.

How do we modify the evaluator?

What changes must we make to the metacircular evaluator in order to get normal order?

We’ve just said that the point at which we want to automatically delay a computation is when an expression
is used as an argument to a procedure. Where does the ordinary metacircular evaluator evaluate argument
subexpressions? In this excerpt from eval:

(define (eval exp env)

(cond ...

((application? exp)

(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))

...))

It’s list-of-values that recursively calls eval for each argument. Instead we could make thunks:

(define (eval exp env)

(cond ...

((application? exp)

(apply (ACTUAL-VALUE (operator exp) env)

(LIST-OF-DELAYED-VALUES (operands exp) env)))

...))

Two things have changed:

1. To find out what procedure to invoke, we use actual-value rather than eval. In the normal order
evaluator, what eval returns may be a promise rather than a final value; actual-value forces the promise
if necessary.

2. Instead of list-of-values we call list-of-delayed-values. The ordinary version uses eval to get the
value of each argument expression; the new version will use delay to make a list of thunks. (This isn’t quite
true, and I’ll fix it in a few paragraphs.)

When do we want to force the promises? We do it when calling a primitive procedure. That happens in
apply:

(define (apply procedure arguments)

(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure arguments))

...))
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We change it to force the arguments first:

(define (apply procedure arguments)

(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure (MAP FORCE ARGUMENTS)))

...))

Those are the crucial changes. The book gives a few more details: Some special forms must force their
arguments, and the read-eval-print loop must force the value it’s about to print.

Reinventing delay and force

I said earlier that I was lying about using delay to make thunks. The metacircular evaluator can’t use
Scheme’s built-in delay because that would make a thunk in the underlying Scheme environment, and we
want a thunk in the metacircular environment. (This is one more example of the idea of level confusion.)
Instead, the book uses procedures delay-it and force-it to implement metacircular thunks.

What’s a thunk? It’s an expression and an environment in which we should later evaluate it. So we make
one by combining an expression with an environment:

(define (delay-it exp env)

(list ’thunk exp env))

The rest of the implementation is straightforward.

Notice that the delay-it procedure takes an environment as argument; this is because it’s part of the
implementation of the language, not a user-visible feature. If, instead of a lazy evaluator, we wanted to add
a delay special form to the ordinary metacircular evaluator, we’d do it by adding this clause to eval:

((delay? exp) (delay-it (cadr exp) env))

Here exp represents an expression like (delay foo) and so its cadr is the thing we really want to delay.

The book’s version of eval and apply in the lazy evaluator is a little different from what I’ve shown here.
My version makes thunks in eval and passes them to apply. The book’s version has eval pass the argument
expressions to apply, without either evaluating or thunking them, and also passes the current environment
as a third argument. Then apply either evaluates the arguments (for primitives) or thunks them (for non-
primitives). Their way is more efficient, but I think this way makes the issues clearer because it’s more
nearly parallel to the division of labor between eval and apply in the vanilla metacircular evaluator.

Memoization

Why didn’t we choose normal order evaluation for Scheme in the first place? One reason is that it easily
leads to redundant computations. When we talked about it in chapter 1, I gave this example:

(define (square x) (* x x))

(square (square (+ 2 3)))

In a normal order evaluator, this adds 2 to 3 four times!

(square (square (+ 2 3))) ==>

(* (square (+ 2 3)) (square (+ 2 3))) ==>

(* (* (+ 2 3) (+ 2 3)) (* (+ 2 3) (+ 2 3)))

The solution is memoization. If we force the same thunk more than once, the thunk should remember its
value from the first time and not have to repeat the computation. (The four instances of (+ 2 3) in the
last line above are all the same thunk forced four times, not four separate thunks.)

The details are straightforward; you can read them in the text.
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• Nondeterministic evaluator

To load the nondeterministic metacircular evaluator, say

(load "~cs61a/lib/ambeval.scm")

Solution spaces, streams, and backtracking

Many problems are of the form “Find all A such that B” or “find an A such that B.” For example: Find an
even integer that is not the sum of two primes; find a set of integers a, b, c, and n such that an + bn = cn

and n > 2. (These problems might not be about numbers: Find all the states in the United States whose
first and last letters are the same.)

In each case, the set A (even integers, sets of four integers, or states) is called the solution space. The
condition B is a predicate function of a potential solution that’s true for actual solutions.

One approach to solving problems of this sort is to represent the solution space as a stream, and use
stream-filter to select the elements that satisfy the predicate:

(stream-filter sum-of-two-primes? even-integers)

(stream-filter Fermat? (pairs (pairs integers integers)

(pairs integers integers)))

(stream-filter (lambda (x) (equal? (first x) (last x))) states)

The stream technique is particularly elegant for infinite problem spaces, because the program seems to be
generating the entire solution space A before checking the predicate B. (Of course we know that really the
steps of the computation are reordered so that the elements are tested as they are generated.)

This week we consider a different way to express the same sort of computation, a way that makes the
sequence of events in time more visible. In effect we’ll say:

• Pick a possible solution.

• See if it’s really a solution.

• If so, return it; if not, try another.

Here’s an example of the notation:

> (let ((a (amb 2 3 4))

(b (amb 6 7 8)))

(require (= (remainder b a) 0))

(list a b))

(2 6)

> try-again

(2 8)

> try-again

(3 6)

> try-again

(4 8)

> try-again

There are no more solutions.
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The main new thing here is the special form amb. This is not part of ordinary Scheme! We are adding it as
a new feature in the metacircular evaluator. Amb takes any number of argument expressions and returns the
value of one of them. You can think about this using either of two metaphors:

• The computer clones itself into as many copies as there are arguments; each clone gets a different value.

• The computer magically knows which argument will give rise to a solution to your problem and chooses
that one.

What really happens is that the evaluator chooses the first argument and returns its value, but if the
computation later fails then it tries again with the second argument, and so on until there are no more to
try. This introduces another new idea: the possibility of the failure of a computation. That’s not the same
thing as an error! Errors (such as taking the car of an empty list) are handled the same in this evaluator
as in ordinary Scheme; they result in an error message and the computation stops. A failure is different; it’s
what happens when you call amb with no arguments, or when all the arguments you gave have been tried
and there are no more left.

In the example above I used require to cause a failure of the computation if the condition is not met.
Require is a simple procedure in the metacircular Scheme-with-amb:

(define (require condition)

(if (not condition) (amb)))

So here’s the sequence of events in the computation above:

a=2

b=6; 6 is a multiple of 2, so return (2 6)

[try-again]

b=7; 7 isn’t a multiple of 2, so fail.

b=8; 8 is a multiple of 2, so return (2 8)

[try-again]

No more values for b, so fail.

a=3

b=6; 6 is a multiple of 3, so return (3 6)

[try-again]

b=7; 7 isn’t a multiple of 3, so fail.

b=8; 8 isn’t a multiple of 3, so fail.

No more values for b, so fail.

a=4

b=6; 6 isn’t a multiple of 4, so fail.

b=7; 7 isn’t a multiple of 4, so fail.

b=8; 8 is a multiple of 4, so return (4 8)

[try-again]

No more values for b, so fail.

No more values for a, so fail.

(No more pending AMBs, so report failure to user.)
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Recursive AmbAmbAmb

Since amb accepts any argument expressions, not just literal values as in the example above, it can be used
recursively:

(define (an-integer-between from to)

(if (> from to)

(amb)

(amb from (an-integer-between (+ from 1) to))))

or if you prefer:

(define (an-integer-between from to)

(require (>= to from))

(amb from (an-integer-between (+ from 1) to)))

Further, since amb is a special form and only evaluates one argument at a time, it has the same delaying
effect as cons-stream and can be used to make infinite solution spaces:

(define (integers-from from)

(amb from (integers-from (+ from 1))))

This integers-from computation never fails—there is always another integer—and so it won’t work to say

(let ((a (integers-from 1))

(b (integers-from 1)))

...)

because a will never have any value other than 1, because the second amb never fails. This is analogous to
the problem of trying to append infinite streams; in that case we could solve the problem with interleave

but it’s harder here.

Footnote on order of evaluation

In describing the sequence of events in these examples, I’m assuming that Scheme will evaluate the arguments
of the unnamed procedure created by a let from left to right. If I wanted to be sure of that, I should use
let* instead of let. But it matters only in my description of the sequence of events; considered abstractly,
the program will behave correctly regardless of the order of evaluation, because all possible solutions will
eventually be tried—although maybe not in the order shown here.

Success or failure

In the implementation of amb, the most difficult change to the evaluator is that any computation may either
succeed or fail. The most obvious way to try to represent this situation is to have eval return some special
value, let’s say the symbol =failed=, if a computation fails. (This is analogous to the use of =no-value= in
the Logo interpreter project.) The trouble is that if an amb fails, we don’t want to continue the computation;
we want to “back up” to an earlier stage in the computation. Suppose we are trying to evaluate an expression
such as

(a (b (c (d 4))))

and suppose that procedures b and c use amb. Procedure d is actually invoked first; then c is invoked with
the value d returned as argument. The amb inside procedure c returns its first argument, and c uses that to
compute a return value that becomes the argument to b. Now suppose that the amb inside b fails. We don’t
want to invoke a with the value =failed= as its argument! In fact we don’t want to invoke a at all; we want
to re-evaluate the body of c but using the second argument to its amb.

A&S take a different approach. If an amb fails, they want to be able to jump right back to the previous amb,
without having to propagate the failure explicitly through several intervening calls to eval. To make this
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work, intuitively, we have to give eval two different places to return to when it’s finished, one for a success
and the other for a failure.

Continuations

Ordinarily a procedure doesn’t think explicitly about where to return; it returns to its caller, but Scheme
takes care of that automatically. For example, when we compute

(* 3 (square 5))

the procedure square computes the value 25 and Scheme automatically returns that value to the eval

invocation that’s waiting to use it as an argument to the multiplication. But we could tell square explicitly,
“when you’ve figured out the answer, pass it on to be multiplied by 3” this way:

(define (square x continuation)

(continuation (* x x)))

> (square 5 (lambda (y) (* y 3)))

75

A continuation is a procedure that takes your result as argument and says what’s left to be done in the
computation.

Continuations for success and failure

In the case of the nondeterministic evaluator, we give eval two continuations, one for success and one for
failure. Note that these continuations are part of the implementation of the evaluator; the user of amb doesn’t
deal explicitly with continuations.

Here’s a handwavy example. In the case of

(a (b (c (d 4))))

procedure b’s success continuation is something like

(lambda (value) (a value))

but its failure continuation is

(lambda () (a (b (redo-amb-in-c))))

This example is handwavy because these “continuations” are from the point of view of the user of the
metacircular Scheme, who doesn’t know anything about continuations, really. The true continuations are
written in underlying Scheme, as part of the evaluator itself.

If a computation fails, the most recent amb wants to try another value. So a continuation failure will redo
the amb with one fewer argument. There’s no information that the failing computation needs to send back
to that amb except for the fact of failure itself, so the failure continuation procedure needs no arguments.

On the other hand, if the computation succeeds, we have to carry out the success continuation, and that
continuation needs to know the value that we computed. It also needs to know what to do if the continuation
itself fails; most of the time, this will be the same as the failure continuation we were given, but it might
not be. So a success continuation must be a procedure that takes two arguments: a value and a failure
continuation.

The book bases the nondeterministic evaluator on the analyzing one, but I’ll use a simplified version based
on plain old eval (it’s in cs61a/lib/vambeval.scm).

Most kinds of evaluation always succeed, so they invoke their success continuation and pass on the failure
one. I’ll start with a too-simplified version of eval-if in this form:

365



(define (eval-if exp env succeed fail) ; WRONG!

(if (eval (if-predicate exp) env succeed fail)

(eval (if-consequent exp) env succeed fail)

(eval (if-alternative exp) env succeed fail)))

The trouble is, what if the evaluation of the predicate fails? We don’t then want to evaluate the consequent
or the alternative. So instead, we just evaluate the predicate, giving it a success continuation that will
evaluate the consequent or the alternative, supposing that evaluating the predicate succeeds.

In general, wherever the ordinary metacircular evaluator would say

(define (eval-foo exp env)

(eval step-1 env)

(eval step-2 env))

using eval twice for part of its work, this version has to eval the first part with a continuation that evals
the second part:

(define (eval-foo exp env succeed fail)

(eval step-1

env

(lambda (value-1 fail-1)

(eval step-2 env succeed fail-1))

fail))

(In either case, step-2 presumably uses the result of evaluating step-1 somehow.)

Here’s how that works out for if:

(define (eval-if exp env succeed fail)

(eval (if-predicate exp) ; test the predicate

env

(lambda (pred-value fail2) ; with this success continuation

(if (true? pred-value)

(eval (if-consequent exp) env succeed fail2)

(eval (if-alternative exp) env succeed fail2)))

fail)) ; and the same failure continuation

What’s fail2? It’s the failure continuation that the evaluation of the predicate will supply. Most of the time,
that’ll be the same as our own failure continuation, just as eval-if uses fail as the failure continuation to
pass on to the evaluation of the predicate. But if the predicate involves an amb expression, it will generate
a new failure continuation. Think about an example like this one:

> (if (amb #t #f)

(amb 1)

(amb 2))

1

> try-again

2

(A more realistic example would have the predicate expression be some more complicated procedure call that
had an amb in its body.) The first thing that happens is that the first amb returns #t, and so if evaluates its
second argument, and that second amb returns 1. When the user says to try again, there are no more values
for that amb to return, so it fails. What we must do is re-evaluate the first amb, but this time returning its
second argument, #f. By now you’ve forgotten that we’re trying to work out what fail2 is for in eval-if,
but this example shows why the failure continuation when we evaluate if-consequent (namely the (amb 1)

expression) has to be different from the failure continuation for the entire if expression. If the entire if
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fails (which will happen if we say try-again again) then its failure continuation will tell us that there are no
more values. That continuation is bound to the name fail in eval-if. What ends up bound to the name
fail2 is the continuation that re-evaluates the predicate amb.

How does fail2 get that binding? When eval-if evaluates the predicate, which turns out to be an amb

expression, eval-amb will evaluate whatever argument it’s up to, but with a new failure continuation:

(define (eval-amb exp env succeed fail)

(if (null? (cdr exp)) ; (car exp) is the word AMB

(fail) ; no more args, call failure cont.

(eval (cadr exp) ; Otherwise evaluate the first arg

env

succeed ; with my same success continuation

(lambda () ; but with a new failure continuation:

(eval-amb (cons ’amb (cddr exp)) ; try the next argument

env

succeed

fail)))))

Notice that eval-if, like most other cases, provides a new success continuation but passes on the same
failure continuation that it was given as an argument. But eval-amb does the opposite: It passes on the
same success continuation it was given, but provides a new failure continuation.

Of course there are a gazillion more details, but the book explains them, once you understand what a con-
tinuation is. The most important of these complications is that anything involving mutation is problematic.
If we say

(define x 5)

(set! x (+ x (amb 2 3)))

it’s clear that the first time around x should end up with the value 7 (5+2). But if we try again, we’d like x
to get the value 8 (5 + 3), not 10 (7 + 3). So set! must set up a failure continuation that undoes the change
in the binding of x, restoring its original value of 5, before letting the amb provide its second argument.

Note: The second part of programming project 4 is this week.
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CS 61A Lecture Notes Week 15

Topic: Logic programming

Reading: Abelson & Sussman, Section 4.4.1–3

This week’s big idea is logic programming or declarative programming.

It’s the biggest step we’ve taken away from expressing a computation in hardware terms. When we discovered
streams, we saw how to express an algorithm in a way that’s independent of the order of evaluation. Now
we are going to describe a computation in a way that has no (visible) algorithm at all!

We are using a logic programming language that A&S implemented in Scheme. Because of that, the notation
is Scheme-like, i.e., full of lists. Standard logic languages like Prolog have somewhat different notations, but
the idea is the same.

All we do is assert facts:

> (load "~cs61a/lib/query.scm")

> (query)

;;; Query input:

(assert! (Brian likes potstickers))

and ask questions about the facts:

;;; Query input:

(?who likes potstickers)

;;; Query results:

(BRIAN LIKES POTSTICKERS)

Although the assertions and the queries take the form of lists, and so they look a little like Scheme programs,
they’re not! There is no application of function to argument here; an assertion is just data.

This is true even though, for various reasons, it’s traditional to put the verb (the relation) first:

(assert! (likes Brian potstickers))

We’ll use that convention hereafter, but that makes it even easier to fall into the trap of thinking there is a
function called likes.

• Rules. As long as we just tell the system isolated facts, we can’t get extraordinarily interesting replies.
But we can also tell it rules that allow it to infer one fact from another. For example, if we have a lot of
facts like

(mother Eve Cain)

then we can establish a rule about grandmotherhood:

(assert! (rule (grandmother ?elder ?younger)

(and (mother ?elder ?mom)

(mother ?mom ?younger) )))

The rule says that the first part (the conclusion) is true if we can find values for the variables such that the
second part (the condition) is true.

Again, resist the temptation to try to do composition of functions!

(assert! (rule (grandmother ?elder ?younger) ;; WRONG!!!!

(mother ?elder (mother ?younger)) ))
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Mother isn’t a function, and you can’t ask for the mother of someone as this incorrect example tries to do.
Instead, as in the correct version above, you have to establish a variable (?mom) that has a value that satisfies
the two motherhood relationships we need.

In this language the words assert!, rule, and, or, and not have special meanings. Everything else is just
a word that can be part of assertions or rules.

Once we have the idea of rules, we can do real magic:

;;;;; In file cs61a/lectures/4.4/logic-utility.scm

(assert! (rule (append (?u . ?v) ?y (?u . ?z))

(append ?v ?y ?z)))

(assert! (rule (append () ?y ?y)))

(The actual online file uses a Scheme procedure aa to add the assertion. It’s just like saying assert! to the
query system, but you say it to Scheme instead. This lets you load the file. Don’t get confused about this
small detail—just ignore it.)

;;; Query input:

(append (a b) (c d e) ?what)

;;; Query results:

(APPEND (A B) (C D E) (A B C D E))

So far this is just like what we could do in Scheme.

;;; Query input:

(append ?what (d e) (a b c d e))

;;; Query results:

(APPEND (A B C) (D E) (A B C D E))

;;; Query input:

(append (a) ?what (a b c d e))

;;; Query results:

(APPEND (A) (B C D E) (A B C D E))

The new thing in logic programming is that we can run a “function” backwards! We can tell it the answer
and get back the question. But the real magic is...

;;; Query input:

(append ?this ?that (a b c d e))

;;; Query results:

(APPEND () (A B C D E) (A B C D E))

(APPEND (A) (B C D E) (A B C D E))

(APPEND (A B) (C D E) (A B C D E))

(APPEND (A B C) (D E) (A B C D E))

(APPEND (A B C D) (E) (A B C D E))

(APPEND (A B C D E) () (A B C D E))

We can use logic programming to compute multiple answers to the same question! Somehow it found all the
possible combinations of values that would make our query true.
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How does the append program work? Compare it to the Scheme append:

(define (append a b)

(if (null? a)

b

(cons (car a) (append (cdr a) b)) ))

Like the Scheme program, the logic program has two cases: There is a base case in which the first argument
is empty. In that case the combined list is the same as the second appended list. And there is a recursive
case in which we divide the first appended list into its car and its cdr. We reduce the given problem into a
problem about appending (cdr a) to b. The logic program is different in form, but it says the same thing.
(Just as, in the grandmother example, we had to give the mother a name instead of using a function call,
here we have to give (car a) a name—we call it ?u.)

Unfortunately, this “working backwards” magic doesn’t always work.

;;;;; In file cs61a/lectures/4.4/reverse.scm

(assert! (rule (reverse (?a . ?x) ?y)

(and (reverse ?x ?z)

(append ?z (?a) ?y) )))

(assert! (reverse () ()))

This works for (reverse (a b c) ?what) but not the other way around; it gets into an infinite loop. We
can also write a version that works only backwards:

;;;;; In file cs61a/lectures/4.4/reverse.scm

(assert! (rule (backward (?a . ?x) ?y)

(and (append ?z (?a) ?y)

(backward ?x ?z) )))

(assert! (backward () ()))

But it’s much harder to write one that works both ways. Even as we speak, logic programming fans are trying
to push the limits of the idea, but right now, you still have to understand something about the below-the-line
algorithm to be confident that your logic program won’t loop.

• Below-the-line implementation.

Think about eval in the MC evaluator. It takes two arguments, an expression and an environment, and it
returns the value of the expression.

In logic programming, there’s no such thing as “the value of the expression.” What we’re given is a query, and
there may or may not be some number of variable bindings that make the query true. The query evaluator
qeval is analogous to eval in that it takes two arguments, something to evaluate and a context in which to
work. But the thing to evaluate is a query, not an expression; the context isn’t just one environment but a
whole collection of environments—one for each set of variable values that satisfy some previous query. And
the result returned by qeval isn’t a value. It’s a new collection of environments! It’s as if eval returned an
environment instead of a value.
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The “collection” of environments we’re talking about here is represented as a stream. That’s because there
might be infinitely many of them! We use the stream idea to reorder the computation; what really happens
is that we take one potential set of satisfying values and work it all the way through; then we try another
potential set of values. But the program looks as if we compute all the satisfying values at once for each
stage of a query.

Just as every top-level Scheme expression is evaluated in the global environment, every top-level query is
evaluated in a stream containing a single empty environment. (No variables have been assigned values yet.)

If we have a query like (and p q), what happens is that we recursively use qeval to evaluate p in the
empty-environment stream. The result is a stream of variable bindings that satisfy p. Then we use qeval to
evaluate q in that result stream! The final result is a stream of bindings that satisfy p and q simultaneously.

If the query is (or p q) then we use qeval to evaluate each of the pieces independently, starting in both
cases with the empty-environment stream. Then we merge the two result streams to get a stream of bindings
that satisfy either p or q.

If the query is (not q), we can’t make sense of that unless we already have a stream of environments to
work with. That’s why we can only use not in a context such as (and p (not q)). We take the stream
of environments that we already have, and we stream-filter that stream, using as the test predicate the
function

(lambda (env) (stream-null? (qeval q env)))

That is, we keep only those environments for which we can’t satisfy q.

That explains how qeval reduces compound queries to simple ones. How do we evaluate a simple query?
The first step is to pattern match the query against every assertion in the data base. Pattern matching is
just like the recursive equal? function, except that a variable in the pattern (the query) matches anything
in the assertion. (But if the same variable appears more than once, it must match the same thing each time.
That’s why we need to keep an environment of matches so far.)

The next step is to match the query against the conclusions of rules. This is tricky because now there can
be variables in both things being matched. Instead of the simple pattern matching we have to use a more
complicated version called unification. (See the details in the text.) If we find a match, then we take the
condition part of the rule (the body) and use that as a new query, to be satisfied within the environment(s)
that qeval gave us when we matched the conclusion. In other words, first we look at the conclusion to see
whether this rule can possibly be relevant to our query; if so, we see if the conditions of the rule are true.
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Here’s an example, partly traced:

;;; Query input:

(append ?a ?b (aa bb))

(unify-match (append ?a ?b (aa bb)) ; MATCH ORIGINAL QUERY

(append () ?1y ?1y) ; AGAINST BASE CASE RULE

()) ; WITH NO CONSTRAINTS

RETURNS: ((?1y . (aa bb)) (?b . ?1y) (?a . ()))

PRINTS: (append () (aa bb) (aa bb))

Since the base-case rule has no body, once we’ve matched it, we can print a successful result. (Before printing,
we have to look up variables in the environment so what we print is variable-free.)

Now we unify the original query against the conclusion of the other rule:

(unify-match (append ?a ?b (aa bb)) ; MATCH ORIGINAL QUERY

(append (?2u . ?2v) ?2y (?2u . ?2z)) ; AGAINST RECURSIVE RULE

()) ; WITH NO CONSTRAINTS

RETURNS: ((?2z . (bb)) (?2u . aa) (?b . ?2y) (?a . (?2u . ?2v)))

[call it F1]

This was successful, but we’re not ready to print anything yet, because we now have to take the body of
that rule as a new query. Note the indenting to indicate that this call to unify-match is within the pending
rule.

(unify-match (append ?2v ?2y ?2z) ; MATCH BODY OF RECURSIVE RULE

(append () ?3y ?3y) ; AGAINST BASE CASE RULE

F1) ; WITH CONSTRAINTS FROM F1

RETURNS: ((?3y . (bb)) (?2y . ?3y) (?2v . ()) [plus F1])

PRINTS: (append (aa) (bb) (aa bb))

(unify-match (append ?2v ?2y ?2z) ; MATCH SAME BODY

(append (?4u . ?4v) ?4y (?4u . ?4z)) ; AGAINST RECURSIVE RULE

F1) ; WITH F1 CONSTRAINTS

RETURNS: ((?4z . ()) (?4u . bb) (?2y . ?4y) (?2v . (?4u . ?4v))

[plus F1]) [call it F2]

(unify-match (append ?4v ?4y ?4z) ; MATCH BODY FROM NEWFOUND MATCH

(append () ?5y ?5y) ; AGAINST BASE CASE RULE

F2) ; WITH NEWFOUND CONSTRAINTS

RETURNS: ((?5y . ()) (?4y . ?5y) (?4v . ()) [plus F2])

PRINTS: (append (aa bb) () (aa bb))

(unify-match (append ?4v ?4y ?4z) ; MATCH SAME BODY

(append (?6u . ?6v) ?6y (?6u . ?6z)) ; AGAINST RECUR RULE

F2) ; SAME CONSTRAINTS

RETURNS: () ; BUT THIS FAILS
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CS 61A Lecture Notes Week 16

Topic: Review

Reading: No new reading; study for the final.

• Go over first-day handout about abstraction; show how each topic involves an abstraction barrier and say
what’s above and what’s below the line.

• Go over the big ideas within each programming paradigm:

Functional Programming:
composition of functions
first-class functions (function as object)
higher-order functions
recursion
delayed (lazy) evaluation
(vocabulary: parameter, argument, scope, iterative process)

Object-Oriented Programming:
actors
message passing
local state
inheritance
identity vs. equal value
(vocabulary: dispatch procedure, delegation, mutation)

Client/Server Programming:
event-driven process (idle if nothing to do)
callback from operating system for events
cooperation among separate computers
(vocabulary: client, server, IP address, port, socket, thread)

Logic Programming:
focus on ends, not means
multiple solutions
running a program backwards
(vocabulary: pattern matching, unification)

• Review where 61A fits into the curriculum. (See the CS abstraction hierarchy in week 1.)

Please, please, don’t forget the ideas of 61A just because you’re not programming in Scheme!
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