
Final Review + Conclusion

Announcements

• Final exam is tomorrow

• Seating assignments will be released by EOD today

• Please do not email us unless you don’t hear by 11:59 pm today

• HW 08 is due today

• Get that bonus point!!

• Last instructor OH today 12:45 - 1:45 pm

• Last day of OH today in Warren Hall

2

Solving Tree Problems

Implement bigs, which takes a Tree instance t containing integer labels. It returns the
number of nodes in t whose labels are larger than all labels of their ancestor nodes. 
(Assume the root label is always larger than all of its ancestors, since it has none.) 
def bigs(t):

 """Return the number of nodes in t that are larger than all their ancestors.

 >>> a = Tree(1, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)])])])

 >>> bigs(a)

 4

3

1

4

3

0

24 5

if node.label > max(ancestors):

if t.is_leaf():

 return ___

else:

 return ___([___ for b in t.branches])

if node.label > max_ancestors:

Somehow track a
list of ancestors

Somehow track the
largest ancestor

☑

☑

☑

☑

Somehow increment
the total count

Implement bigs, which takes a Tree instance t containing integer labels. It returns the
number of nodes in t whose labels are larger than all labels of their ancestor nodes. 
(Assume the root label is always larger than all of its ancestors, since it has none.) 
def bigs(t):

 """Return the number of nodes in t that are larger than all their ancestors.

 >>> a = Tree(1, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)])])])

 >>> bigs(a)

 4

 """

 def f(a, x):

 if ___:

 return 1 + ___

 else:

 return ___

 return ___

Solving Tree Problems

4

a.label > x

sum(f(b, a.label) for b in a.branches)

sum(f(b, x) for b in a.branches) []

 []

f(t,)

node.label > max_ancestors

Somehow track the
largest ancestor

Root label is always larger than its ancestors

1

4

3

0

24 5

☑

☑

☑

☑

f(,0)

f(,1)

f(,4) f(,4)

f(,1)

f(,3)

f(,3)Somehow increment the total count

t.label - 1

Some initial value for the largest ancestor so far...

A node max_ancestor

Past Exam Questions

Ask Us Anything!!

A Huge Thanks to all TAs & Tutors

7

Thank you and Good Luck Tomorrow :)

