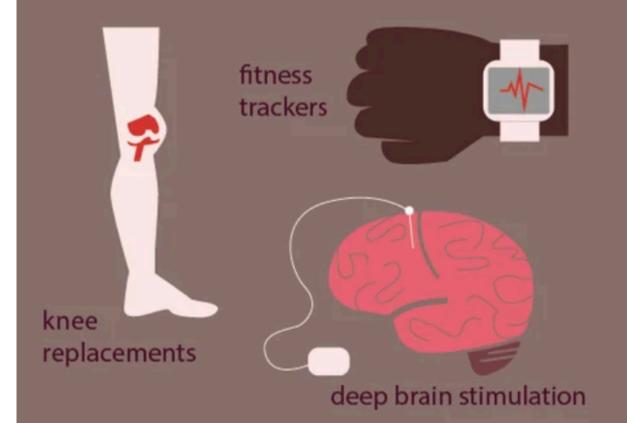
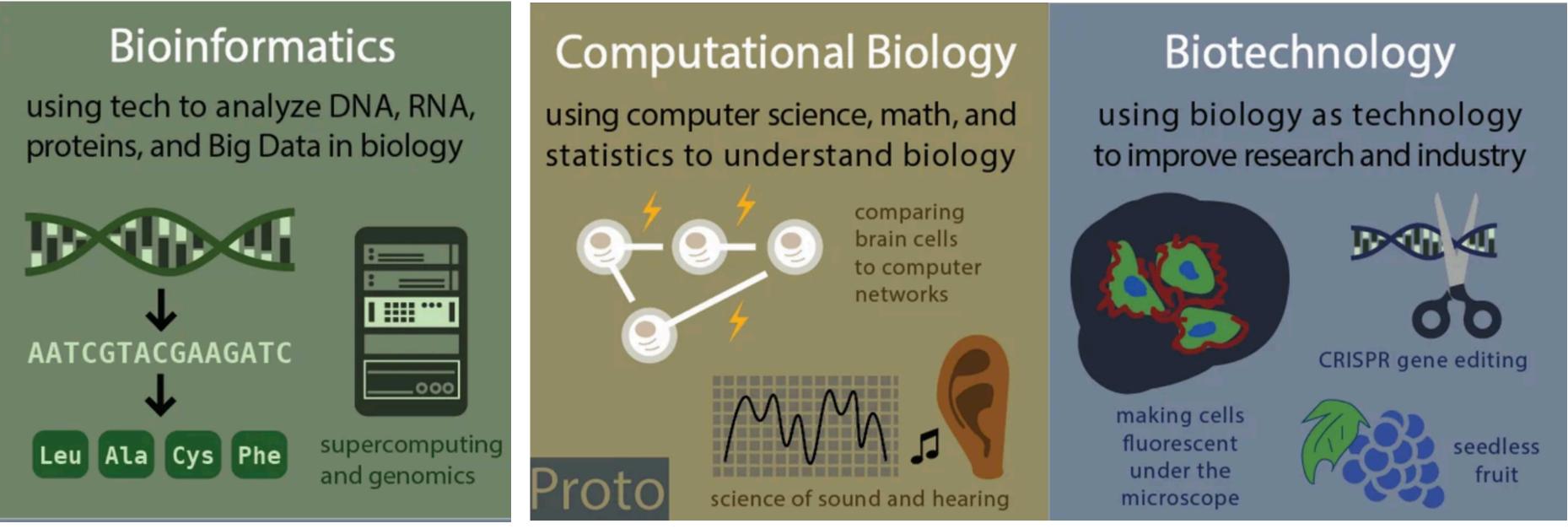
Bioinformatics

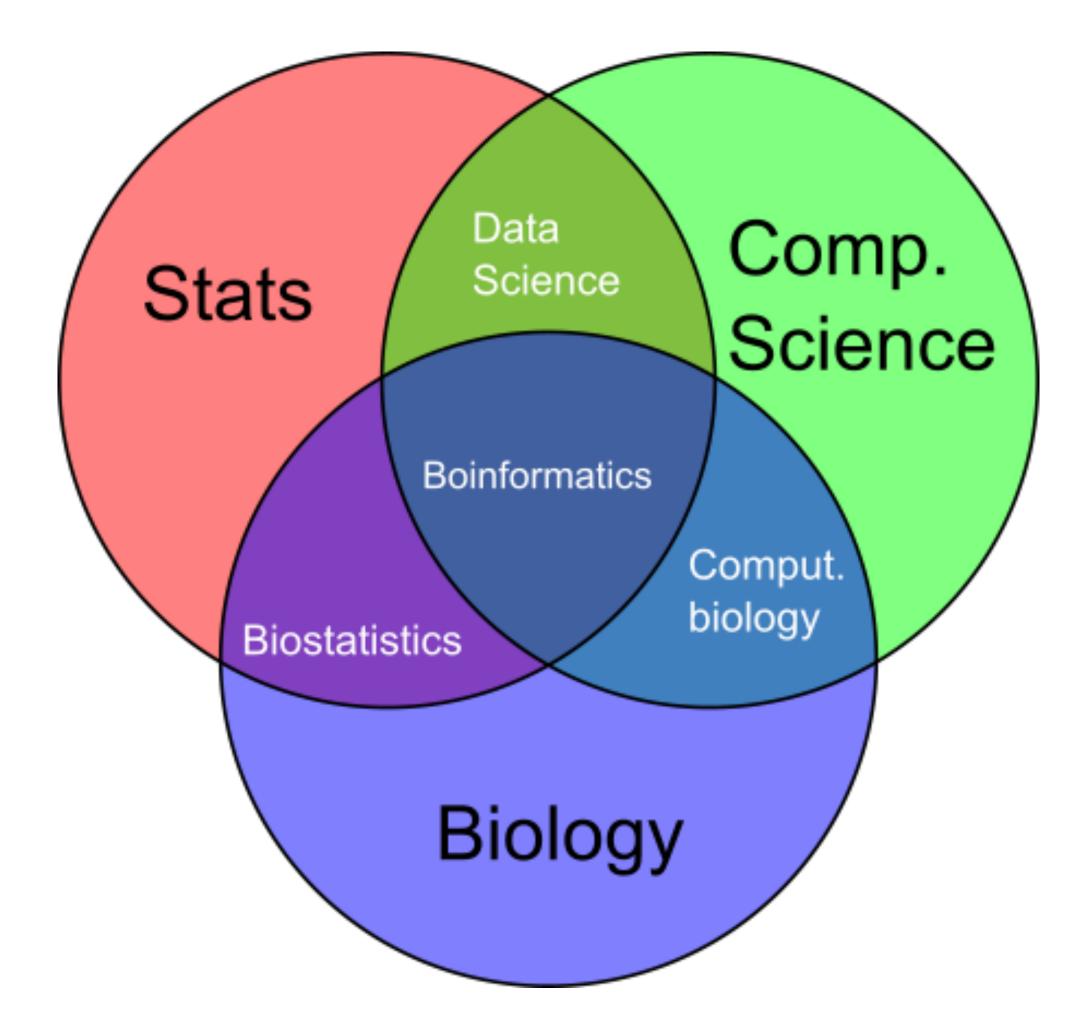
Announcements

- Homework 8 has been released and will be due Wed 8/9 11:59pm
 - There are **two** components --> surveys and written response
 - The surveys are NOT eligible for any extensions
 - The written response is eligible for extensions as usual
- extra credit point if at least 80% of the course gets full credit on this homework (submits all surveys and completes the written response)
- Exam alterations form priority deadline was yesterday • If you need an exam alteration please request ASAP
- <u>HW Recovery 1-4</u> has been processed
 - No HW Recovery for HW 7 & 8
- Lab 13 is optional
- <u>Topical Review Sessions</u> today


• All students who receive full credit on this homework are eligible to receive **1 additional**



Biomedical Engineering vs. Bioinformatics vs. Computational Biology vs. Biotechnology


Biomedical Engineering

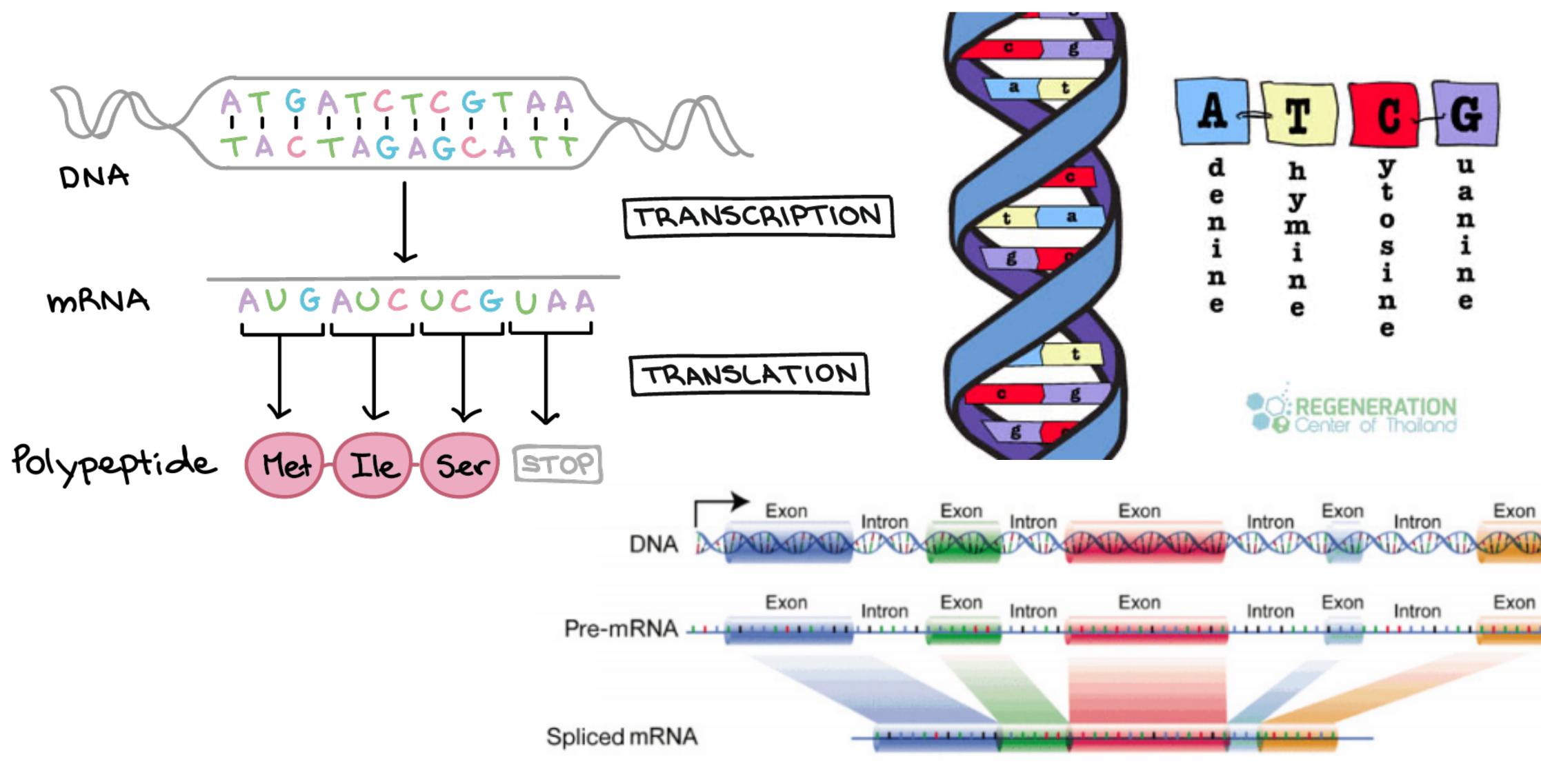
using engineering to treat disease

Focus for Today: Bioinformatics

Fields in Bioinformatics

Translational Bioinformatics – Development of techniques for transforming voluminous • biomedical (especially genomic) data to support proactive, predictive, preventive, and participatory health

- management, and evaluation of new health knowledge
- *Clinical Informatics* Development and application of techniques to improve health • Medical Specialties
- supporting patient-centric health care needs


Public Health Informatics— Development of methodologies for supporting public health • needs, including surveillance, prevention, preparedness, and health promotion

Clinical Research Informatics- Development of approaches for enabling the discovery,

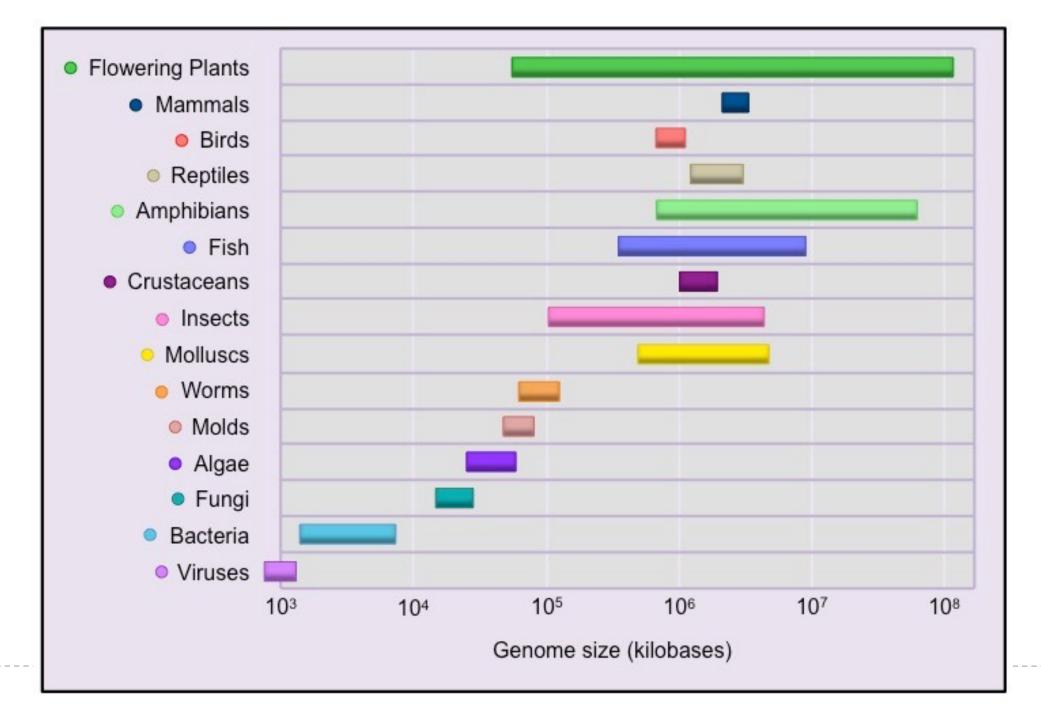
care delivery services; clinical informatics is a subspecialty of the American Board of

Consumer Health Informatics— Development of information structures and approaches for

Central Dogma of Biology

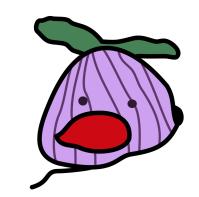
Genome

- and acts as a set of instructions for how to build and maintain you
- Genome: complete set of DNA
- instructions for how to make a certain aspect of you


• DNA: string of complex molecules called nucleotides. It contains the genetic information

• Gene: DNA is organized into little chunks of information that each carry a specific set of

Genome

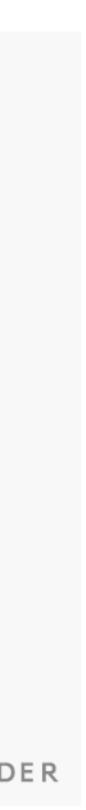

- multicellular organisms
- Would an onion or human have a larger genome size?
 - C-Value Paradox: genome size fails to correlate well with apparent complexity
 - Onion: 16 billion bases, Human: 3.2 billion bases
- Size of the genome varies across different groups of organisms

• The complexity of an organism increases from the lower single-celled organisms to higher

This onion won't make me cry

Sure I will. Just not with sadness.

Fun Fact!


The genetic similarity between a <u>human</u> and a **mouse** is:

Source: National Human Genome Research Institute

BUSINESS INSIDER

Human Genome Project

- An international scientific research project with the goal of determining the base pairs that make up human DNA
- Launched in October 1990 and completed in April 2003
- Tells us a lot about our genes and how they are organized!

Bioinformatics: Genomic Analysis

How does bioinformatics allow us to understand the similarity in genes?

Algorithms will scan past both ends of the matching sequence

Mouse

Similarities in sequences: Analyze those genes and see how they translate into similar traits

. . A T G C G T A G C

Human

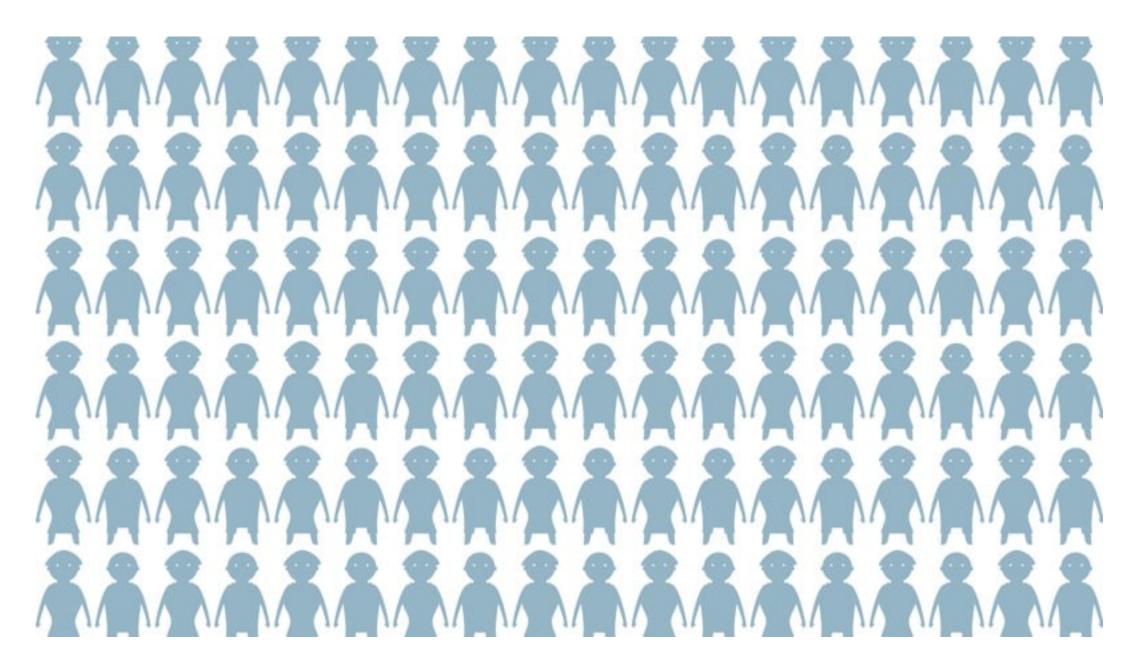
Differences in sequences: Analyze those genes and see how they translate into different traits

Bioinformatics: Genomic Analysis

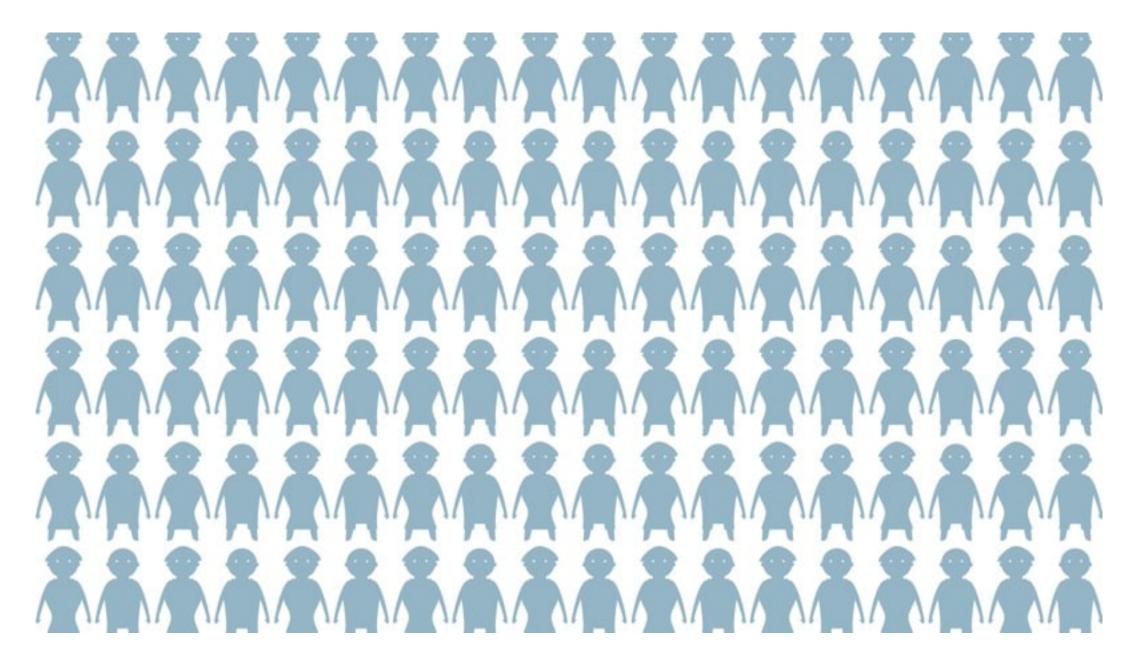
Cinderella

Is this base difference C/T significant for disease?

Belle


. . A T G C G T A G C C A C A T C C G A A T C G A . . .

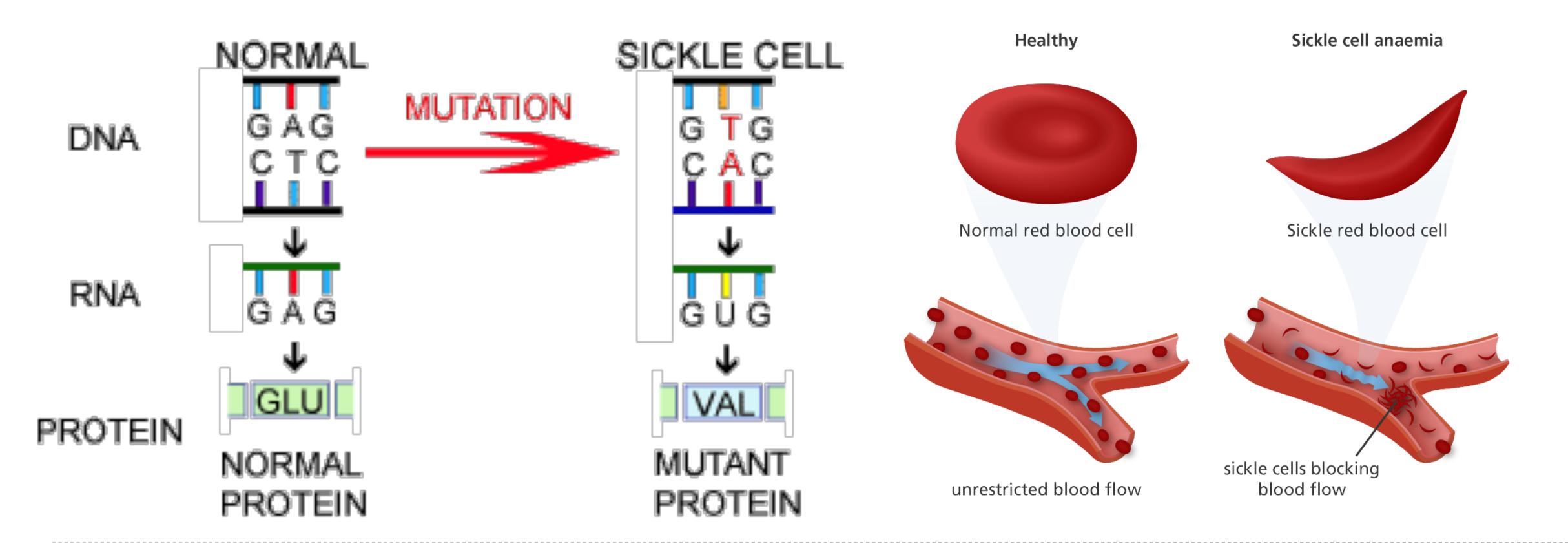
. . A T G C G T A G C C A T A T C C G A A T C G A . . .


Conduct a Study

Is this base difference significant for disease?

Group A: 100 Healthy Subjects

Hypothetical Results: 4/100 of group A have a T and 98/100 of group B have T



Group B: 100 Diabetic Subjects

Base Substitution Sickle Cell Disease

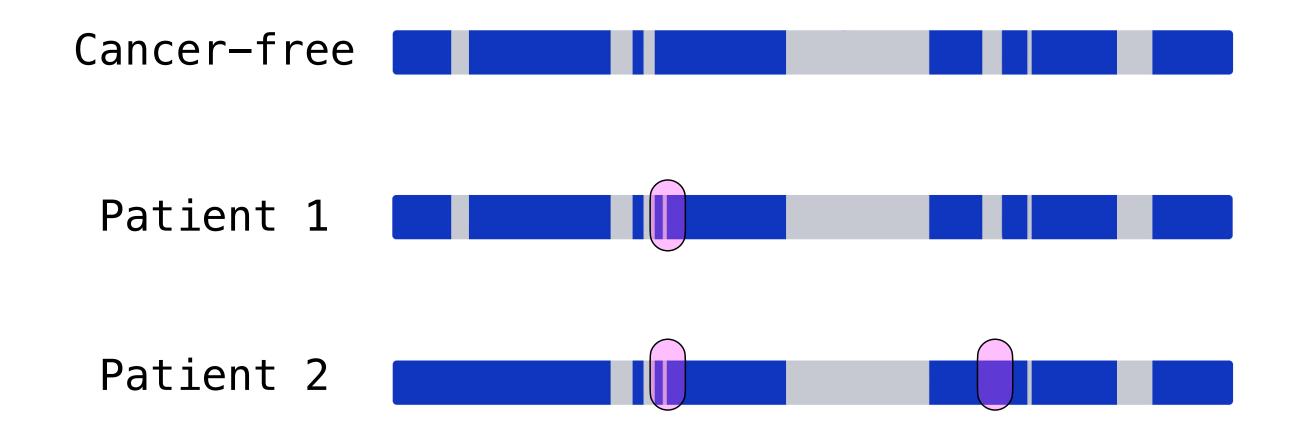
- shape and die early, leaving a shortage of healthy red blood cells
- transversion in the sixth codon of the HBB gene

• Sickle cell disease is an inherited disease in which red blood cells contort into a sickle

• Discovered through genomic analysis, the genetic basis of sickle cell disease is an A-to-T

Applications in Neuroscience

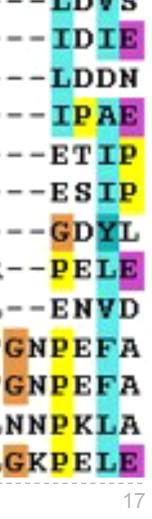
- cause a lot of irreversible damage
- Ischemic stroke: blood supply to part of the brain is interrupted/reduced
- Arctic ground squirrels: their brain is incredibly resilient!
- Provides us clues for stroke treatment


• Stroke is a leading cause of death in the US and 87% of strokes are ischemic strokes which

Genomic Analysis for Cancer Treatment and Diagnosis

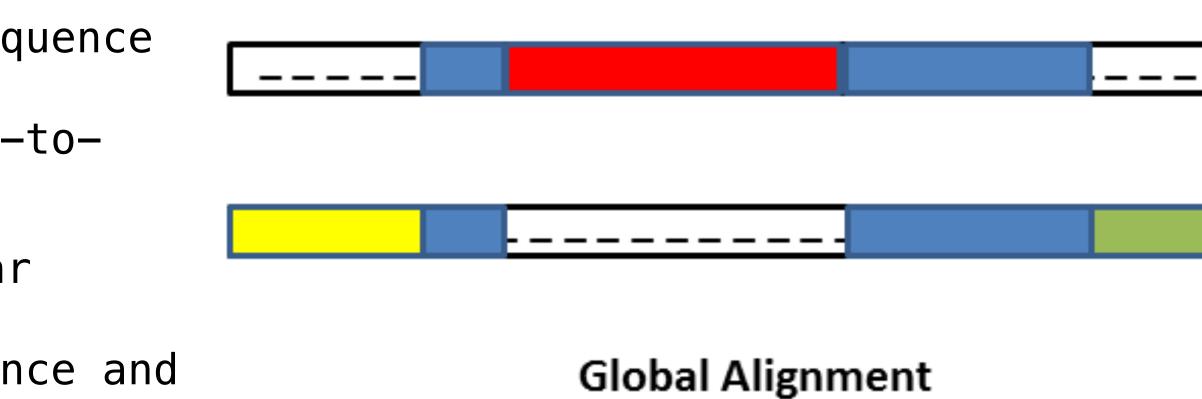
- Clinician's can order genome sequencing of their patients
- patients with cancer
 - Pinpoint mutations that are allowing the cancer cells to grow uncontrollably
 - Choose the best treatment

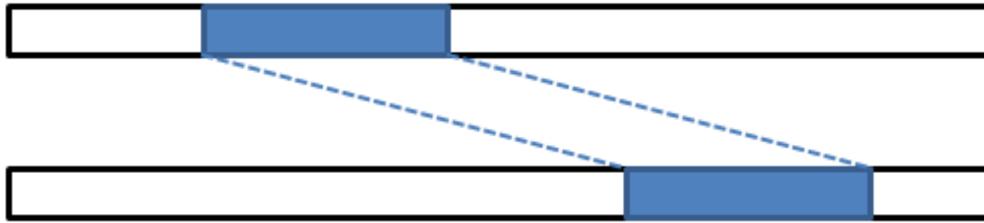
• The patient's cancer cells are compared with the normal genome and genome of many other


Sequence Alignment

- Sequence alignment is a way of arranging the DNA sequences to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the sequences
- Aligned sequences are typically represented as rows within a matrix
- Two alignment types are used: global and local

Insulin Gene Sequence Database


Mouse)				-	М	R	I	M	AV	11	т	QI	ΕI	RK	I	A	ĸ	W	K	IE	Е	V	ĸI	31	E	ŝ	<mark>,</mark> K	L	RE	3 1	ŋ
Rat)				-	М	ĸ	R	L	AI	JR	L	K	QJ	RK	V	A	S	W	K	LE	Е	V	ĸI	81	. T	? E	1	I	KÌ	18	j
:		M	S V	V	s	L	v	G	Q۴	1 Y	ĸ	RI	EJ	К <mark>Р</mark>	I	P	Е	W	K	ГI	м	L	RI	31	ĿF	ŝ	1	F	SF	KH	þ
;		- 6	4b	IL	A	I	G	K)	RF	۲Y	V	R'	r I	RQ	Y	P	A	R	K	¥ĸ	Ί	V	SI	3 7	łJ	ľ	1	L	QI	K N	1
;				-	-	-	M	AJ	ΕE	ER	H	H'	r I	ΕH	I	P	Q	W	K	KD	E	I	El	N I	EF	E	1	I	Q٤	5 H	ņ
L.				-	-	-	M.	A	ΕE	R	H	H	r I	ΕH	Ι	P	Q	W	K	ΚD	E	I	El	ST I	F	E	I	, I	QS	S F	ŋ
1				-	-	-	M	A	AV	R	G	S٠		1	₽	P	E	Y	K	¥₿	A	V	EI	87	C F	(F	M	II	S 8	5 K	()
L.	-	М7	4.4	ĸ	A	K	G	Q1	9 E	S	G	YI	El	<mark>6</mark> K	A	A	E	W	K	RB	E	V	KI	31	ŀ	E	1	M	DE	S Y	η
1				-	-	-				-	-	-1	M	AH	V	A	E	W	K)	KK	E	V	QI	81	JF	I)1	I	K	5 Y	p
,				-	-	-	-1	M	гт	P	ιE	SI	EJ	ΗK	I	A	P	W	ĸ	ΙE	Е	V	N	K I	ŀ	(E	1	L	Kł	4 G	
L.				-	-	-	-	M	II)A	١K	SI	El	ΗK	I	A	P	W	K	ΙE	Е	V	N7	AI	JF	E	I	L	KS	S P	U
L.				-	-	-		- 1	МE	т	K	VI	ĸ	AH	V	A	P	W	K	ΙE	Е	V	K'	C I	ŀ	G	1	I	KS	5 K	[]
				-	-	-					-	-1	M	AH	A	A	E	W	K)	KK	E	V	EI	31	J	IN	II	I	KS	3 Y	1


HTIIIANIEGFPADKLHDIRKKMRGM-AEIKVTKNTLFGIAAKNAG-----LDVS NTILIGNLEGFPADKLHEIRKKLRGK-ATIKVTKNTLFKIAAKNAG----IDIE RVVLFADLTGTPTFVVQRVRKKLWKK-YPMMVAKKRIILRAMKAAGLE---LDDN PYVFLFDLHGLSSRILHEYRYRLRRY-GVIKIIKPTLFKIAFTKVYGG---IPAE KVFGMVGIEGILATKMQKIRRDLKDV-AVLKVSRNTLTERALNQLG----ETIP KVFGMVRIEGILATKIQKIRRDLKDV-AVLKVSRNTLTERALNQLG-**PVVAIVSFRNVPAGOMOKIR**REF**RGK-AEIKVVKNTLLERAL**DALG----GDYL ENVGLVDLEGIPAPQLQEIRAKLRERDTIIRMSRNTLMRIALEEKLDER--PELE EVVGIANLADIPARQLQKMRQTLRDS-ALIRMSKKTLISLALEKAGREL--ENVD QIVALVDMMEVPARQLQEIRDKIR-GTMTLKMSRNTLIERAIKEVAEETGNPEFA ANVIALIDMMEVPAVOLOEIRDKIR-DOMTLKMSRNTLIKRAVEEVAEETGNPEFA KPVVAIVDMMDVPAPOLOEIRDKIR-DKVKLRMSRNTLIIRALKEAAEELNNPKLA YPVIALVDVSSMPAYPLSQMRRLIRENGGLLRVSRNTLIELAIKKAAQELGKPELE

Global & Local Alignment

- The global approach compares one whole sequence with other entire sequences
- The output of a global alignment is a one-tocomparison of two sequences
 - Used when comparing two genes of similar function
- The local method uses a subset of a sequence and attempts to align it to subset of other sequences
- Local regions are aligned with the highest level of similarity
- Looking for conserved patterns in DNA

Local Alignment

_	_	,	-					
							1	
_	_	_	_	_	_	_	J	

BLAST: Basic Local Alignment Search Tool

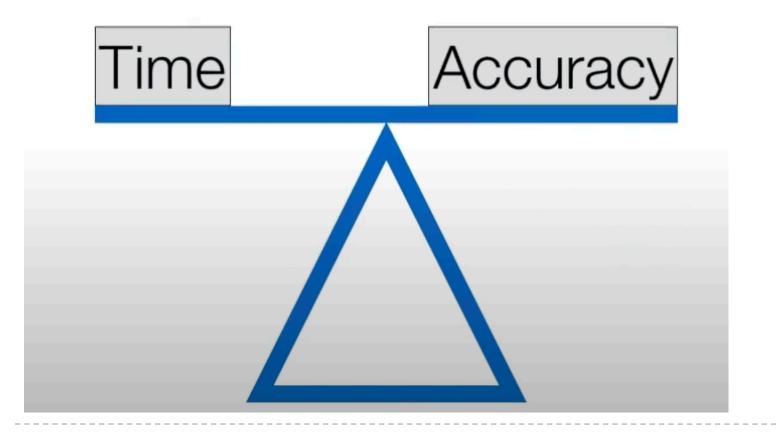
• Identifies similarities between sequences by comparing it with database of sequences

-MTEPAQWKIDFVKNLENEINSRKVAAIVSIKGI Query Sequence (Human Insulin Gene)

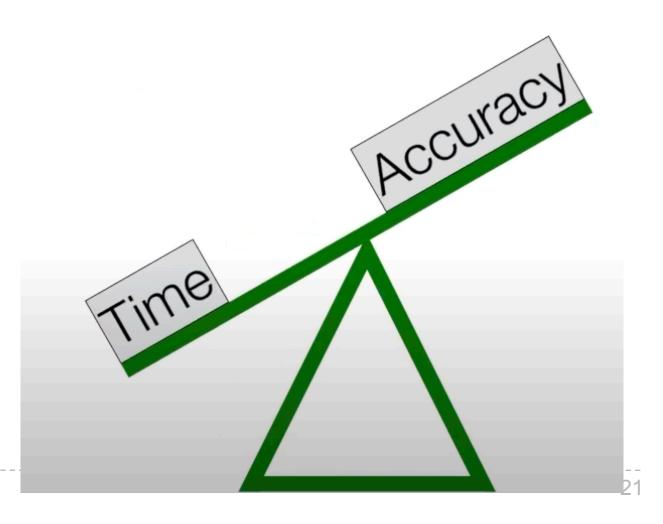
Mouse	-	-	-	-	-	-	-	-	-	-	-	M
Rat					_							
					-							
					-							
					-							
					-							
					T							
					-							_
					-							
					-							
					-							
					-	_						_
					-							
					М							
	-		-		М	-		-				
	84	_			s		-		_			
					A			_				
					-							
					-							_
	_		_				_					
	M	A	¥		A							
	-	-	-		-							
					-							
					-			10 A.				
	-	-			-							
	-	-			_						-	
		-	-	_		_						
	_	_	_	_	_							
					_	<u> </u>		_				
					_							
					_			_				
					_			100			_	
	_	_	_	_	_	_	_	_	_	_	_	1
	_	_	_	_	_	_	_	_	_	_	_	
	Ŧ	•	•	•	•		•	•	-	~	•	

Insulin Gene Sequence Database

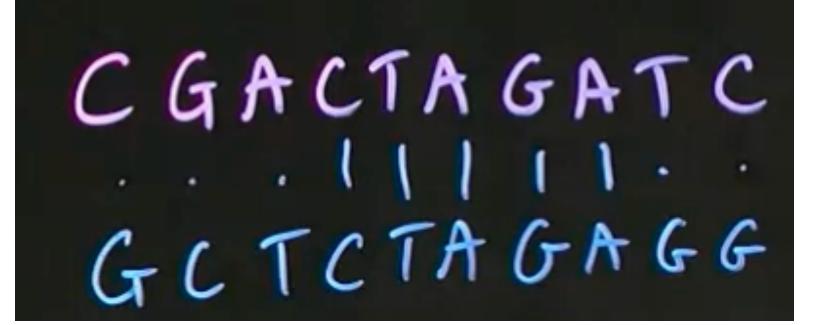
M<mark>P</mark>REDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLEN M<mark>P</mark>REDRATWKSNYFLKIIQLLDD<mark>YPKCFIVGAD</mark>NVGSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLE M<mark>P</mark>REDRATWKSNYFLKIIQLLDD<mark>YPKCFIVGAD</mark>NVGSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLE M<mark>P</mark>REDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLE APREDRATWKSNYFMKIIQLLDDYPKCFVVGADNVGSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLEI M<mark>P</mark>REDRATWKSNYFLKIIQLLDD<mark>YPKCFIVGAD</mark>NVGSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLE MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQTIRLSLRGK-AVVLMGKNTMMRKAIRGHLE M<mark>P</mark>REDRATWKSNYFLKIIQLLND<mark>YPKCFIVGAD</mark>NVGSKQMQTIRLSLRGK-AIVLMGKNTMMRKAIRGHLE MVRENKAAW<mark>K</mark>AQYFIKVVELFDEFPKCFIVGADNVGSK<mark>QMQ</mark>NIRTSLRGL-AVVLM<mark>GKNTMM</mark>RKAIRGHLE ASGAG-SKR<mark>K</mark>KLFIEKATKLFTTYDKMIVAEADFVGSSQLQKIRKSIRGI-GAVLMGKKTMIRKVIRDLADS MS<mark>GAG-SKRKNVFIEKATKLFTT Y</mark>DKMIVAEADFVGS<mark>SQLQ</mark>KIRKSIRGI-GAVLMGKKTMIRKVIRDLADS MAKLSKQQK<mark>K</mark>QMYIEKLSSLIQQ<mark>Y</mark>SKILIVHVDNVGSNQMASVRKSLRGK-ATILMGKNTRIRTALKKNLQA TTTKK IAKWK VDE VAE LTEKLKTHKTIIIAN IEGFPADKLHE IRKKLRGK – ADIKVTKNNLFNIALKNAG – -FQERK<mark>IAKWK</mark>IEEVKELE<mark>Q</mark>KLRE<mark>Y</mark>HT IIIAN IEGFPADKLHD IRKKMRGM-AEIKVTKNTLFGIAAKNAG--LKQRK<mark>VA</mark>SW<mark>K</mark>LEEVKELT<mark>ELI</mark>KNSNTILIGNLEGFP</mark>ADKLHEIRKKLRGK-ATIKVTKNTLFKIAAKNAG--KREK<mark>PIPEWK</mark>TLMLRELE<mark>ELF</mark>SKHRVVLFADLTGTPT</mark>FVVQRVRKKLWKK-YPMMVAKKRIILRAMKAAGLE /RTRQ<mark>YP</mark>AR<mark>K</mark>VKIVSEAT<mark>ELL</mark>QK<mark>YPYVFLFDLHGLS<mark>S</mark>RILHE<mark>YR</mark>YRLRRY-GVIKIIKPTLFKIAFTKVYG(</mark> HTEH IPQWKKDE IEN IKEL IQSHKVFGMVGIEG ILATKMQK IRRDLKDV – AVLKVSRNTLTERALNQLG – -HTEHIPQWKKDEIENIKELIQSHKVFGMVRIEGILATKIQKIRRDLKDV-AVLKVSRNTLTERALNQLG--S---PPEYKVRAVEEIKRMISSKPVVAIVSFRNVPAGOMOKIRREFRGK-AEIKVVKNTLLERALDALG--YEPKVAEWKRREVKELKELMDEYENVGLVDLEGIPAPQLQEIRAKLRERDTIIRMSRNTLMRIALEEKLDE -MAHVAEWKKKEVQELHDLIKGYEVVGIANLADIPARQLQKMRQTLRDS-ALIRMSKKTLISLALEKAGRE ESEHK<mark>IAPWK</mark>IEEVNKLK<mark>ELL</mark>KN<mark>G</mark>QIVALVDMMEVPAR<mark>QLQ</mark>EIRDKIR-GTMTLKMSRNTLIERAIKEVAE KSEHK<mark>IAPWK</mark>IEEVNALK<mark>ELL</mark>KSANVIALIDMMEVPAVQLQEIRDKIR-DQMTLKMSRNTLIKRAVEEVAE</mark>I KVKAH<mark>VAPWK</mark>IEEVKTLK<mark>GLI</mark>KSK<mark>PVVAIVDM</mark>MDVPAPQLQEIRDKIR-DKVKLRM<mark>SRNTLIIRALKEAAE</mark>I -MAHVAEWKKKEVEELANLIKSYPVIALVDVSSMPAYPLSQMRRLIRENGGLLRVSRNTLIELAIKKAAQ -MAHVAEWKKKEVEELAKLIKSYPVIALVDVSSMPAYPLSQMRRLIRENGGLLRVSRNTLIELAIKKAAKI -MAHVAEWKKKEVEELANLIKSYPVVALVDVSSMPAYPLSQMRRLIRENNGLLRVSRNTLIELAIKKVAQ -MAHVAEWKKKEVEELANIIKSYPVIALVDVAGVPAYPLSKMRDKLR-GKALLRVSRNTLIELAIKRAAQI RKTET IPEWKQEEVDAIVEMIESYESVGVVNIAGIPSRQLQDMRRDLHGT-AELRVSRNTLLERALDDVD--RQT E V I PQWKRE E V DE L V DF I E S YE S VG V VG V AG I P S RQLQ SMRRE L HG S - AAV RMSRNTL VN RALDE VN - -RTTEEVPEWKRQEVAELVDLLETYDSVGVVNVTGIPSKQLQDMRRGLHGQ-AALRMSRNTLLVRALEEAG--- - MKE VSQQKKELVNE IT OR IKASRS VAI VDTAG IRT ROIODIRGKNRGK - INLKVIKKTLLF KALENLGD--MRKINPKKKEIVSELAQDITKSKAVAIVDIKGVRTRQMQDIRAKNRDK-VKIKVVKKTLLFKALDSIND--MTEPAQWKIDFVKNLENE INSRKVAAIVSIKGLRNNEFQKIRNSIRDK-ARIKVSRARLLRLAIENTGK-

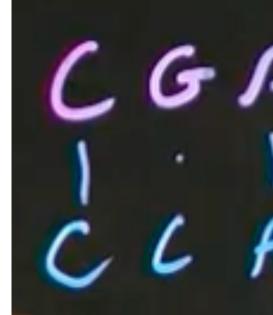

ł	N	-	-	P	A	L	Е
ł	N	-	-	P	A	L	E
I	N	-	-	P	A	L	E
I	N	-	-	P	A	L	E
ł	N	-	-	P	A	L	Е
I	N	-	-	s	A	L	E
I	N	-	-	P	A	L	E
I	N	-	-	P	A	L	Е
I	N	-	-	P	Q	L	E
3	ĸ	-	-	P	E	L	D
3	ĸ	-	-	P	E	L	D
4	V	-	-	P	Q	I	Е
-	-	-	-	Y	D	т	к
-	-	-	-	L	D	A	S
-	-	-	-	I	D	I	E
3	-	-	-	L	D	D	N
3	-	-	-	I	P	A	E
	-	-	-	Е	т	I	Р
-	-	-	-	E	s	I	Р
-	-	-	-	G	D	Y	L
3	R	-	-	P	E	L	E
Ξ	L	-	-	E	N	A	D
3	т	G	N	P	Е	F	A
3	т	G	N	P	E	F	A
3	L	N	N	P	ĸ	L	A
3	L	G	ĸ	P	E	L	E
3	L	G	ĸ	P	E	L	E
3	L	G	K	P	E	L	E
3	L	G	Q	P	E	L	E
-	-	-	-	D	G	L	E
	-						1000
	-						
	-						
	-						
-	-	-	-	N	N	I	A
•	•	•	•	•		9	0

Break


BLAST Algorithm

- BLAST uses a seed and extend algorithm
 - Scales with your query sequence and the size of the search database
 - <u>https://www.youtube.com/watch?v=jzSIC2UzxZ4</u>
- It is heuristic, based on trial and error and the process of elimination NOT precise mathematical formulations
- Ctrl-F as a Tool for Scanning is "BLAST" in "Composing Programs"
- BLAST is something ~60–80% similar to "BLAST" in "Composing Programs"




• BLAST does not look for exact matches because that would be computationally expensive

BLAST

Glance of the BLAST Algorithm

Query Sequence

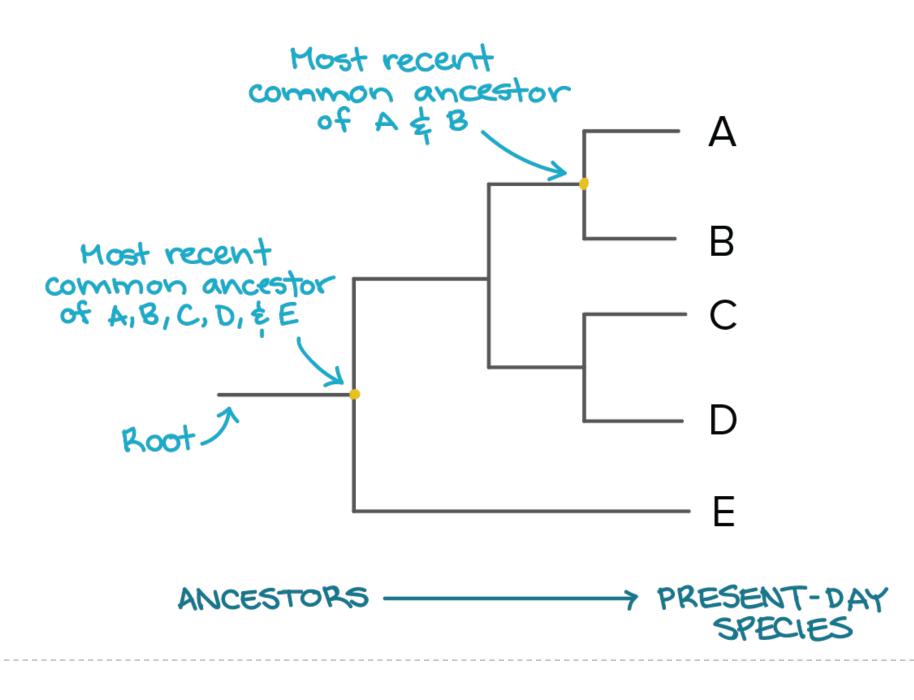
Target Sequence in the Database

Query Sequence

GACAGC

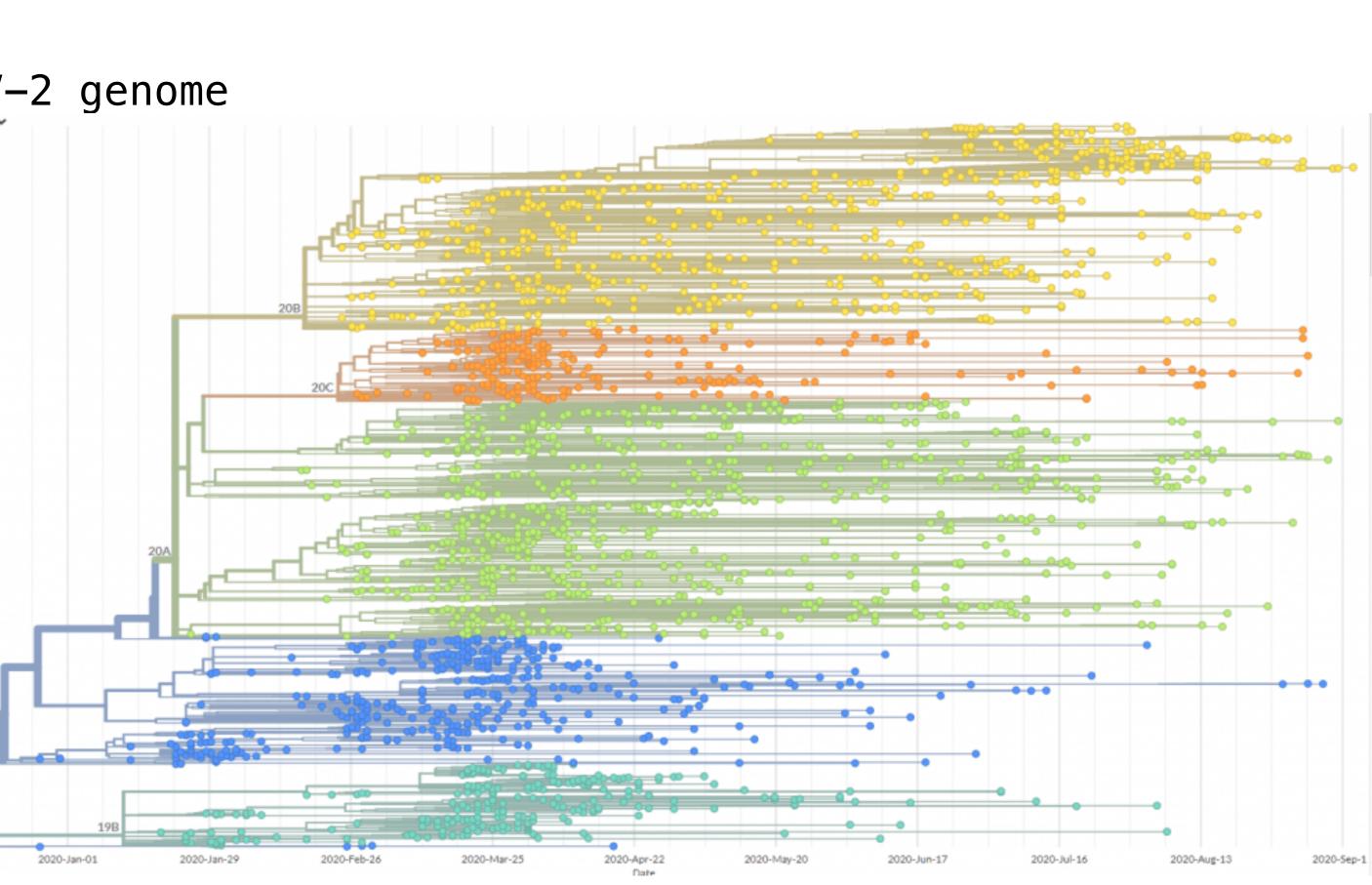
Database Sequence

ACGGATTCCATAT


				Α	С	G	G	Α	т	т	С	С	Α	т	Α	т
Scoring Scheme			0	0	0	0	0	0	0	0	0	0	0	0	0	0
		G	0	0	0	1	1	0	0	0	0	0	0	0	0	0
Match	-1	Α	0	1	0	0	0	2	1	0	0	0	1	0	1	0
Maton		С	0	0	2	1	0	1	1	0	1	1	0	0	0	0
Mismatch	-1	Α	0	1	1	1	0	1	0	0	0	0	2	1	1	0
Gap Insertion	-1	G	0	0	0	2	2	1	0	0	0	0	1	1	0	0
		С	0	0	1	1	1	1	0	0	1	1	0	0	0	0

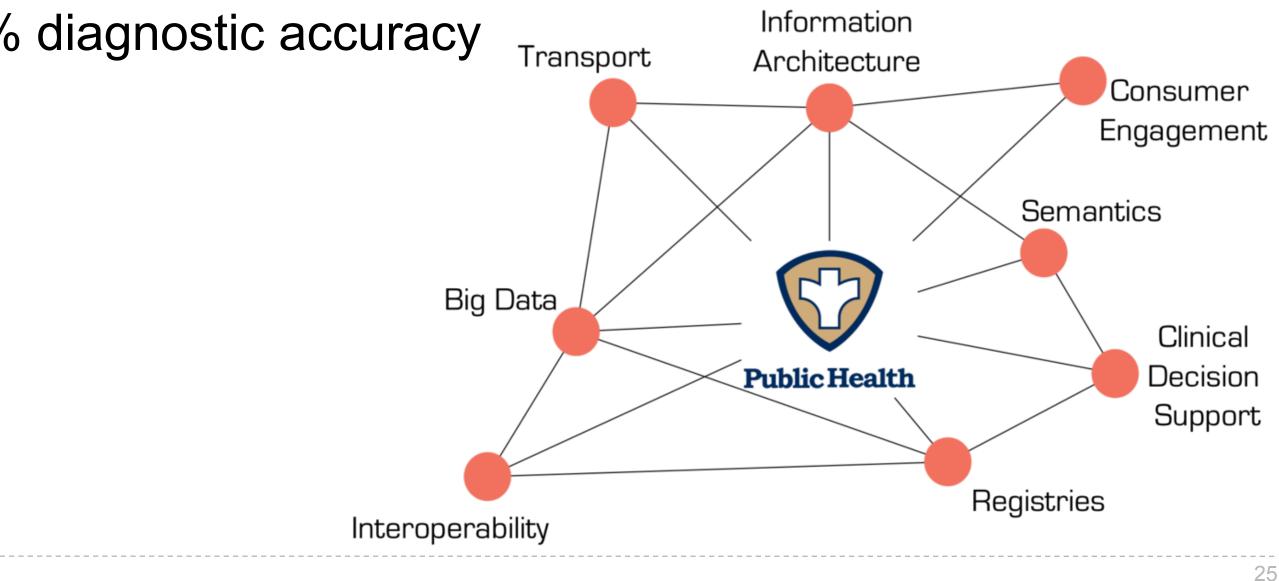
CGACTAGATC CCAGTTGTTA

Understanding Evolution: Phylogeny


- How do we track the evolution of a virus? COVID-19 variants, for instance??
- Virus have a VERY HIGH rate of mutation
- RNA viruses have high mutation rates—up to a million times higher than their hosts • Through genomic analysis of virus samples, we can understand how the sequence of it changes over time
- Phylogenetic trees allow us to visualize evolution

Phylogenetic Trees

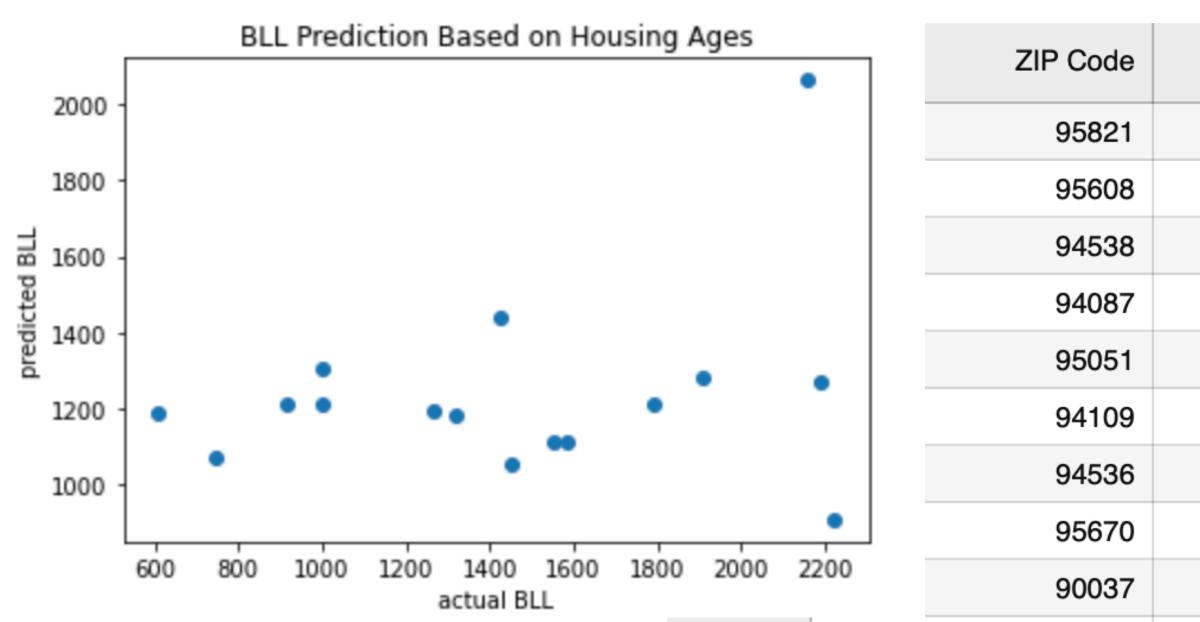
- species
- Similarities and differences are based upon physical and genetic characteristics
- Two specifies are more related if they have a more recent common ancestor
- The root is the initial Wuhan SARS-CoV-2 genome


19A

• A branching diagram or tree showing the evolutionary relationship among various biological

Public Health Informatics

- Capturing, managing and analyzing information to improve population-level health outcomes
- Transmit data to public health officials so they can better monitor and prevent disease
- Providers are already using AI algorithms to gain "unprecedented insights into diagnostics, care processes, treatment variability and patient outcomes"
 - 1 in 18 patients getting the wrong diagnosis in the ER department
 - According to the Society for the Improvement of Diagnosis in Medicine (SIDM) between 40,000 and 80,000 individuals die each year due to misdiagnoses
 - "Differential Diagnosis Tool" that had up to 96% diagnostic accuracy

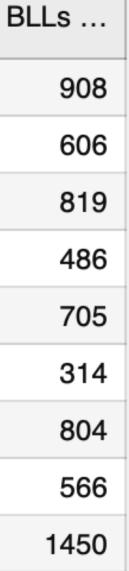


Lead Poisoning Research Project

- There is huge effort for prevention!
- Prevention Program (CLPPP)
- Why do some areas have more cases of lead pointing than others?
 - Geographic, demographic, and socioeconomic factors!
 - severe cases (BLL > $4.5\mu g/dL$) and house age due to likely use of lead paints

Modeling & Testing Hypothesis

• Geographic, demographic, and socioeconomic factors of a zip code can serve as future



• Publicly available data on blood lead levels (BLL) from the Childhood Lead Poisoning

```
• For instance, I hypothesized there is a positive correlation between the number of
```

reasonable features for a multiple regression model to predict number of cases in the

Postal District Name	Number of BLLs > 4.5	% of BLLs > 4.5 (0-6)	Total number of I
Sacramento	118	13.00%	
Carmichael	56	9.24%	
Fremont	39	4.76%	
Sunnyvale	22	4.53%	
Santa Clara	30	4.26%	
San Francisco	12	3.82%	
Fremont	29	3.61%	
Rancho Cordova	20	3.53%	
Los Angeles	47	3.24%	

Conclusion

- Bioinformatics is a fast-growing area with lots of exciting opportunities!
- BIO ENG 145 Introduction to Machine Learning for Computational Biology • Using machine learning methods for genome-scale experimental data
- **BIO ENG 134** Genetic Design Automation
- **BIO ENG C131** Introduction to Computational Molecular and Cell Biology
 - ontologies
- <u>Data Science Discovery Program</u> for exposure working on these projects

• Use of software (lots of OOP) to design and manage genetics experiments

• Bioinformatics and Computational biology, with an emphasis on alignment, phylogeny, and

