
Special Topics I

Intro to Compilers and CPython Internals

Parts of this lecture are heavily inspired from "See CPython run: Getting to know your Python interpreter" by James Bennett

Announcements

● Hw06 and Lab12 due today 8/03
● Scheme Released

○ Checkpoint 2 due Friday, 8/04
○ Project party today 8/03 3-5:30 PM Wozniak Lounge
○ Whole project due Tuesday 8/08. EC for submitting on 8/7
○ Submit to the correct autograder!

● Scheme contest due Friday, 8/04
● Hw05 recovery released!
● There were some technical issues with the website. Materials will be uploaded shortly after lecture.
● Homework 7 released tomorrow. It will be on the shorter end!
● Final exam on 8/10 6-9 PM

○ Submit exam alteration form ASAP

https://go.cs61a.org/exam-alts

Levels of Languages

High-level Language

(Python, Scheme, SQL, Java)

Assembly Language

(RISC-V Assembly, x86 Assembly)

Machine Language

(RISC-V Instruction Set, x86 Instruction Set)

3

Punchcard

4

Programming Languages

A computer typically executes programs written in many different programming languages

5

Machine languages: statements are interpreted by the hardware itself

• A fixed set of instructions invoke operations implemented by the circuitry of the
 central processing unit (CPU)

• Operations refer to specific hardware memory addresses; no abstraction mechanisms

High-level languages: statements & expressions are interpreted by another program or compiled (translated) into another
language

• Provide means of abstraction such as naming, function definition, and objects

• Abstract away system details to be independent of hardware and operating system

Compilers

Compilers: translate source code into machine code so that the machine code can be distributed and run repeatedly

6

Source
Code OutputCompiler Machine

Code
CPU

int a = (b + c) - (d + e);

C Code

add t1, s1, s2
add t2, s3, s4
sub s0, t1, t2

0000 0001 0010 0100 1000 0011 0011 0011
0000 0001 0100 1001 1000 0011 1011 0011
0100 0000 0111 0011 0000 0100 0011 0011

Assembly Language
(RISC-V)

Machine Language

Interpreters

7

Source
Code OutputInterpreter

Interpreters: run source code directly producing an output/value, without first compiling it into machine code

a = (b + c) - (d + e)

Python Code

Evaluated!

Tradeoffs:

Source
Code

Understanding Source Code

In order to interpret source code, a parser must be written to understand that source code

8

Source
Code OutputInterpreter

In the context of interpreters:

Parser AST Evaluator
AST - Abstract Syntax Tree

• Represents the structure of the
source code in a tree

Parsing

Parsing

A Parser takes in text and returns an expression that represents the text in a tree-like structure

10

Text Expression
Lexical
analysis Tokens

Syntactic
analysis

Let’s break this down!

 '1 + 2 * 3'

Parser

 1, '+', 2, '*', 3
+

1 *

2 3

Lexical Analysis

Lexical analysis converts input text into a list of tokens

• Each token represents the smallest unit of information

11

 1, '+', 2, '*', 3

• Iterative process

• Processes one line at a time

• Checks for malformed tokens

• Determines types of tokens

 '1 + 2 * 3'

• Recursive process

• Processes multiple lines

• Returns tree structure

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression

• Formal way of representing the tokens generated from lexical analysis

• Symbols can be “nested”

12

 1, '+', 2, '*', 3
+

1 *

2 3

BNF

Backaus-Naur Form is a schema designed specifically for describing the syntax of programming languages using
context-free grammars

A context-free grammar can be parsed statement by statement without needing prior context. Not all grammars are context
free.

BNF is composed of a series of “production rules”, which can be thought of as symbol substitutions

BNF has been taught formally in previous iterations of this class, but isn’t a focus this semester

Python has a grammar!

https://docs.python.org/3/reference/grammar.html

https://docs.python.org/3/reference/grammar.html

BNF for (part of) Calculator

?start: calc_expr
?calc_expr: NUMBER | calc_op
calc_op: "(" OPERATOR calc_expr* ")"
OPERATOR: "+" | "-" | "*" | "/"

If I make a really good CFG for the Scheme language, I can actually pass a
BNF grammar into an algorithm to make my parser, which would have
saved you a lot of work in Lab 9

ASTs

AST - short for abstract syntax tree. Represents the hierarchical structure of formal languages.

ASTs …

● are unambiguous

● can be annotated. Very important for statically typed languages.

● can hold additional information about code

● don’t include extra structural information! No parentheses!

● can be transformed

● are typically built by the parser

(* 4 (+ 7 5))

Parsing Python

Inspecting Python

Ever wonder about those syntax check questions?

def two_of_three(i, j, k):

 """Return m*m + n*n, where m and n are the two smallest members of the

 positive numbers i, j, and k.

 """

 return _____

def two_of_three_syntax_check():

 """Check that your two_of_three code consists of nothing but a return statement.

 >>> # You aren't expected to understand the code of this test.

 >>> import inspect, ast

 >>> [type(x).__name__ for x in ast.parse(inspect.getsource(two_of_three)).body[0].body]

 ['Expr', 'Return']

 """

 # You don't need to edit this function. It's just here to check your work.

How does this work?

We’re going to think about this!

Inspect and Ast Modules

Inspect - module that has useful functions to get information about live objects such as classes, functions, frames, etc. For
example, it can retrieve the source code of a method

Ast - module to help process trees of the Python abstract syntax grammar

def two_of_three_syntax_check():

 """Check that your two_of_three code consists of nothing but a return statement.

 >>> import inspect, ast

 >>> [type(x).__name__ for x in ast.parse(inspect.getsource(two_of_three)).body[0].body]

 ['Expr', 'Return']

 """

Returns an AST node!
<ast node>

Returns the source code!
'def two_of_three(i, j, k):\n
"""docstring"""\n return "answer"\n

(Demo)

What Python Sees

🙀🙀🙀

https://emojidictionary.emojifoundation.com/weary_cat_face

What We Care About

constant constant

“docstring” “answer”

expr return

Func def

two_of_three args

[list]

arg arg arg

kji

body[list]

Ternary Expression recap:

<if-true> if <cond> else <if-false>

>>> 1 if True else 3
1
>>> 1 if False else 3
3

What does this evaluate to?
>>> 1 if 2 else 3 if 0 else 5

What does the AST look like?

Dangling Else (Variation)

(Demo)

if

3 0 5

if

1 2

1 2 3

if

if 0 5

Evaluates to 1!

Evaluates to 5!

Dangling Else (Variation)

What does this evaluate to?

>>> 1 if 2 else 3 if False else 5

What does Python do?
expression:
 | disjunction 'if' disjunction 'else' expression
 | disjunction
 | lambdef

Not an expression!

Only an expression after else(Demo)

Python’s Solution

Break

Computers Are Magical

https://news.ycombinator.com/item?id=28205823

Is Python Interpreted or Compiled?

Yes

Who’s Interpreting Who?

High-level Language

(Scheme)

Higher Level Language

Python

Higher Level Language

Python???

27

Python Implementations

Popular Implementations!

● CPython (What you download in this class!)
● PyPy (Python implemented with a stripped down version of Python)
● Jython (Java)
● Skybison (C++)
● ClPython (Lisp! The circle completes!)
● Brython! (Python in the browser using Javascript! It’s how code.cs61a.org works!)
● RustPython
● MicroPython (Reduced language for embedded systems

Interesting Implementations

● LOLPython (Python but in I Can Haz Cheezburger speak)
● x-Python (CPython interpreter written in Python)
● Unladen Swallow (Google’s attempt to speedup Python, but no longer supported)

https://wiki.python.org/moin/PythonImplementations

https://wiki.python.org/moin/PythonImplementations

What is Python? (CPython)

Python is many things

● Python Interpreter

● Parser

● Compiler

● Virtual Machine

● Standard Library

● C API

● Big snek

● More…

Python Interpreters

30

Source
Code OutputInterpreter

Interpreters: run source code directly producing an output/value, without first compiling it into machine code

a = (b + c) - (d + e)

Python Code

Evaluated!

Lies! (In most cases)

CPython Internals

CPython Internals

32

Source
Code OutputParser

CPython: runs byte code directly producing an output/value, but first compiles source code into byte code

1 + 2 + 3

Python Code

AST Compiler InterpreterByte
Code

+

1 *

2 3

LOAD_CONST 2
LOAD_CONST 3
BINARY_OP_MULTIPLY_INT
LOAD_CONST 1
BINARY_OP_ADD_INT

6

New stuff!

Generating Bytecode

Dis Module

Dis - module for disassembling Python code in Python Bytecode. Analyzes source code, functions, generators, etc. and
outputs the Python bytecode for it.

>>> import dis

>>> dis.Bytecode("1 + 2 + 3")

>>> for instr in bytecode:

... print(instr)

>>> dis.dis("x=2")

0 LOAD_CONST 0 (2)

2 STORE_NAME 0 (x)

4 LOAD_CONST 1 (None)

6 RETURN_VALUE

(Demo)

Bytecode Optimization

https://github.com/python/cpython/blob/main/Python/ast_opt.c

Interpreting Bytecode

https://github.com/python/cpython/blob/main/Python/bytecodes.c

Stack - a data structure for storing and retrieving values. Can only retrieve the most recently added item! Last in first out or
LIFO order!

Push - adds an item to the top of the stack

Pop - removes an item from the top of the stack

Peek - looks at the top item of the stack without removing it

We can use a list as a stack!

stack.append("a")

stack = []

Stacks

A

B

CD

stack.append("b")

stack.append("c")

stack.pop()

stack.append("d")

26

Stack Machine - a processor or virtual machine that computes by modifying values in a stack. Has very simple instructions!

Virtual Stack Machine - a stack machine that’s simulated using software instead of hardware!

Push - adds an item to the top of the stack

Pop - removes an item from the top of the stack

Operator - combines the top two values in the stack and then pushes the result

1 + 2 * 3

stack.push(1)

stack = Stack()

Stack Machine

1

3

7
stack.push(2)

stack.push(3)

stack.multiply()

stack.add()

Interpreting Byte Code

(Demo)

Inspired by https://aosabook.org/en/500L/a-python-interpreter-written-in-python.html

