
Lecture 25:
SQL II

Tyler Lam
CS61A Summer 2023
2 August 2023

Announcements
● Lab 12 is due Thursday, 08/03 (Tomorrow)
● Homework 6 is due Thursday, 08/03 (Tomorrow)
● Scheme

○ Checkpoint 2 is due Friday, 08/04
○ Full project is due Tuesday, 08/08

● Scheme Contest
○ If you want to participate, the submission deadline is Friday, 08/04

● This is the last lecture in the course that will contribute to any
assignment content!
○ After this we have three special topics lectures—these are in scope for

the final, but won't introduce any new coding or problem-solving
techniques. Any final exam question corresponding to the special topics
should be answerable so long as you watched the lecture.

● I’m a third-year majoring in
Computer Science and Data
Science, Minor in Linguistics

● 3x Tutor, 1st time TA

● I like:

○ Traveling

○ Trees

○ Trains

About Me!

Review

SQL
SQL (Structured Query Language) is a declarative programming
language we can use to "query" information from databases.

SQL assumes data is organized in rows and columns. Each row
corresponds to a unique data point, and each column corresponds
to a features of each data point.

We could have a database on any kind of information that we want!

Databases
In this section of the lecture, we'll primarily work with a database containing two tables:

cities, which contains four columns:

● city
● county
● state
● pop_2020

pop_area_2010, which contains five columns:

● city
● county
● state
● pop_2010
● land_area_sq_miles

These tables will be made public in a Jupyter Notebook after lecture if you want to refer to it
later on.

Querying a Database
sql> SELECT * FROM cities LIMIT 3;
city|county|state|pop_2020
Antioch|Contra Costa|CA|115291
Berkeley|Alameda|CA|124321
Berkeley|Cook|IL|5338
sql> SELECT * FROM pop_area_2010 LIMIT 3;
Antioch|Contra Costa|CA|102372|29.17
Berkeley|Alameda|CA|112580|10.43
Berkeley|Cook|IL|5209|1.4
sql> SELECT * FROM pop_area_2010 ORDER BY pop_2010 DESC LIMIT 3;
Los Angeles|Los Angeles|CA|3792621|469.49
San Jose|Santa Clara|CA|945942|178.24
San Francisco|San Francisco|CA|805235|46.9
sql> SELECT * FROM pop_area_2020 WHERE pop_2010 < 5000;
city|county|state|pop_2010|land_area_sq_miles
Springfield|Baca|CO|1451|1.13
Springfield|Effingham|GA|2852|3.25

Joins
sql> SELECT a.city, pop_2010, pop_2020 FROM cities AS a,
pop_area_2010 AS b WHERE a.city = b.city AND a.county = b.county AND
a.state = b.state;
city|pop_2010|pop_2020
Antioch|102372|115291
Berkeley|112580|124321
Berkeley|5209|5338
Berkeley|41255|43754
...
Palatine|68557|67908
sql> SELECT a.city, b.city FROM cities AS a, cities AS b WHERE
a.county = b.county AND a.city < b.city;
city|city
Antioch|Concord
Antioch|Richmond
Berkeley|Fremont
Berkeley|Hayward
Berkeley|Oakland
...

WILL CREATE ANOTHER EXAMPLE

Numerical and String Expressions

Expressions
We don't have to SELECT information directly from columns in SQL—we
can also use operations to transform that data.

For example, we can do string concatenation on information in our
database, using the || operator.

SELECT (city || ", " || state) AS full_city, (county
|| “ County”) AS full_county FROM cities LIMIT 5;

full_city full_county

Antioch, CA Contra Costa County

Berkeley, CA Alameda County

Berkeley, IL Cook County

Berkeley, NJ Ocean County

Berkeley, MO St. Louis County

Expressions
We can also use function calls and arithmetic operators to create numeric
expressions that do operations on our data.

● Combining values: +, -, *, /, %, and, or,
● Transforming values: ABS(), ROUND(), NOT, -
● <, <=, >, >=, <>, !=, =

SELECT pop_2020 / 1000 AS pop_1000s FROM cities;

SQL also has the ability to do some operations on strings!

● Concatenating strings: || (we just saw this one)
● Selecting substrings: SUBSTR()

SELECT
SUBSTR(city, 1, 3) AS initials FROM cities;

Exercise!
Let’s find the city that has gained the most people between 2010 and
2020.

Select a table with two columns:

● Every city in the cities table and the pop_area_2010 table
● The difference between pop_2020 and pop_2010 of that city
● Sort in descending order by that difference

My solution:

SELECT
a.city, a.pop_2020 - b.pop_2010 AS pop_difference
FROM cities AS a, pop_area_2010 AS b
WHERE a.city = b.city AND a.county = b.county AND a.state
= b.state ORDER BY pop_difference DESC LIMIT 1;

Aggregation

Aggregate Functions
So far, all the functions we've been able to write have only operated on single rows
at a time.

If we wanted to compare multiple rows across a table, we could use joins, but
even then we could only really compare as many rows as joins we were willing to
do.

However, SQL has aggregation functions that allow us to compare across all the
rows in a table

SELECT pop_2020 FROM cities ORDER BY pop_2020 DESC LIMIT 1;

max(pop_2020)

3898747

pop_2020

3898747

SELECT MAX(pop_2020) FROM cities;

Mixing Aggregation and Single Values
If we include a non-aggregated column in an aggregation query, SQL will still fill
that column with a value

In the case of MAX and MIN, that column will be filled based on the row in which
the maximum or minimum value lives

For other aggregation functions (SUM, AVG, etc.) a value will be picked arbitrarily

SELECT city_name, MAX(pop_2010) FROM pop_area_2010;

SELECT city_name, MIN(pop_2010) FROM pop_area_2010;

SELECT city_name, AVG(pop_2010) FROM pop_area_2010;

city max(pop_2010)

Los Angeles 3792621

city min(pop_2010)

Springfield 1451

city avg(pop_2010)

Antioch 304744.5

Aggregating Over Expressions
You can also aggregate over expressions:

SELECT a.city, b.city, MAX(a.pop_2010 - b.pop_2010)
FROM pop_2010 AS a, pop_2010 AS b;

What do we think this query does?

a.city b.city max(a.pop_2010 -
b.pop_2010)

Los Angeles Springfield 3791170

Break

Grouping

Taylor Swift Discography

Creating Tables From Tables
What does this SQL statement do?

CREATE TABLE swiftsongs AS
SELECT name, album, (length / 1000) AS seconds
FROM taylorswift;

name album seconds

...Ready For It? reputation 208

22 Red (Deluxe Edition) 232

A Perfectly
Good Heart

Taylor Swift 220

A Place in this
World

Taylor Swift 199

Afterglow Lover 223

All Too Well Red (Deluxe Edition) 329

…(178 more rows)

name album seconds

Clean 1989 (Deluxe) 271

Bad Blood 1989 (Deluxe) 211

Untouchable
(Taylor’s
Version)

Fearless
(Taylor's
Version)

312

Daylight Lover 293

The Man Lover 190

Grouping
We can divide our table into groups, and then aggregate within those
groups, instead of aggregating across our entire table.

We do this using the GROUP BY clause:

SELECT name, MAX(seconds) FROM swiftsongs
GROUP BY album;

name MAX(seconds)

Clean 271

Untouchable
(Taylor’s Version)

312

Daylight 293

Snow On The
Beach (feat. Lana

Del Rey)

256

All Too Well 329

Aggregation Functions and Grouping
These are the main aggregation functions you need to know for this class (and life in
general)

● MAX(<col>) - Finds the maximum value of <col>, within a group

● MIN(<col>) - Finds the minimum value of <col>, within a group

● SUM(<col>) - Adds together all the values in <col>, within a group

● AVG(<col>) - Finds the average of all the values in <col>, within a group

● COUNT(*) - Counts the number of elements in a group

name MAX(seconds)

Dear John 403

name MIN(seconds)

I Wish You
Would - Voice

Memo

107

name SUM(seconds)

…Ready For
It?

43038

name AVG(seconds)

…Ready For
It?

233.9021739130
43

name COUNT(*)

...Ready For
It?

184

Exercise!
Create a table with two columns:

● The name of each distinct album in the helper table we made named
swiftsongs

● The number of songs each distinct album has

My solution:

SELECT album, COUNT(*) FROM swiftsongs GROUP BY album;

album COUNT(*)

1989 (Deluxe) 19

Fearless
(Taylor's
Version)

26

Lover 18

Midnights 13

Grouping by Multiple Columns
We don't have to just group by single columns—we can also group by
multiple columns!

SELECT album, instrumentalness, COUNT(*) FROM
taylorswift GROUP BY album, instrumentalness;

album instrumentalness COUNT(*)

1989 (Deluxe) 0 8

1989 (Deluxe) 1.64e-06 1

1989 (Deluxe) 6.16e-06 1

Fearless (Taylor's Version) 0 24

Fearless (Taylor's Version) 3.97e-06 1

Fearless (Taylor's Version) 1.2e-05 1

Grouping by expressions
We can also group by expressions!

SELECT
SUBSTR(name, 1, 1) AS first_character, seconds / 60 AS
minutes FROM swiftsongs GROUP BY
SUBSTR(name, 1, 1), seconds / 60;

first_character minutes

. 3

2 3

A 3

A 5

B 2

Filtering groups
We can also filter groups based on criteria using the HAVING clause

SELECT album, COUNT(*) FROM swiftsongs GROUP BY album
HAVING COUNT(*) > 20;

album COUNT(*)

Fearless (Taylor's Version) 26

Red (Deluxe Edition) 22

Speak Now (Deluxe Package) 22

HAVING is similar to WHERE, but specifically for filtering by aggregate
functions. If you're using an aggregate function in your filter clause, you
should use HAVING. Otherwise, you should use WHERE

You can also use both together!

Final Query Structure and Order of Operations
1. FROM: Retrieve the tables.
2. WHERE: Filter the rows.
3. GROUP BY: Make groups.
4. HAVING: Filter the groups.
5. SELECT: Aggregate into rows and get

specific columns.
6. ORDER BY: Sort by certain columns

(optionally ascending/descending,
default is ascending).

7. LIMIT: Only show a user-determined
number of rows.

SELECT <column/expression list>
FROM <table>
[WHERE <condition>]
[GROUP BY <column(s)>]
[HAVING <condition>]
[ORDER BY <column(s)> [DESC/ASC]]
[LIMIT <number of rows>];

SELECT

HAVING

FROM WHERE

LIMIT

GROUP BY

ORDER BY ANSWER!

Final Exercise
Which album has the highest average danceability of all albums that contain over
15 songs and are at least 1 hour long?
SELECT album, COUNT(*), SUM(length / 1000 / 60) AS minutes,
AVG(danceability) AS danceability FROM taylorswift GROUP BY
album HAVING COUNT(*) > 15 AND SUM(minutes) >= 60 ORDER BY
danceability DESC LIMIT 1;

album COUNT(*) minutes danceability

Red (Deluxe Edition) 22 79 0.633409090909091

HAVING is similar to WHERE, but specifically for filtering by aggregate
functions. If you're using an aggregate function in your filter clause, you
should use HAVING. Otherwise, you should use WHERE

You can also use both together!

Final Exercise
Which album has the highest average danceability of all albums that contain over
15 songs and are at least 1 hour long?
SELECT album, COUNT(*), SUM(length / 1000 / 60) AS minutes,
AVG(danceability) AS danceability FROM taylorswift GROUP BY
album HAVING COUNT(*) > 15 AND SUM(minutes) >= 60 ORDER BY
danceability DESC LIMIT 1;

album COUNT(*) minutes danceability

Red (Deluxe Edition) 22 79 0.633409090909091

HAVING is similar to WHERE, but specifically for filtering by aggregate
functions. If you're using an aggregate function in your filter clause, you
should use HAVING. Otherwise, you should use WHERE

You can also use both together!

Database Connections

Creating, dropping, and modifying tables
CREATE TABLE [table]([column-defs]);

DROP TABLE [table];

INSERT INTO [table] VALUES ([exprs]);

UPDATE [table] SET [column-city] = [expr] WHERE
[expr];

DELETE FROM [table] WHERE [expr];

None of these functions are in-scope for assignments or exams in this
class, but the ability to modify tables is crucial if you're ever dealing with
SQL in your future endeavors!

Python and SQL
Python has a module called sqlite3 that lets us interact with SQL databases! (truly
modules for everything)

db = sqlite3.Connection('cards.db')
sql = db.execute
sql('DROP TABLE IF EXISTS cards;')
sql('CREATE TABLE cards(card, place);')
def play(card, place):

sql('INSERT INTO cards VALUES (?, ?)', (card, place))
db.commit()

Casino Blackjack
Pl

ay
er

De
al

er

Connections to Other Fields
SQL is an amazing tool for managing databases and is used extensively
throughout the Computing and Data Science world.

If you liked the SQL portion of this course, consider taking:

● DATA 8, DATA 100, DATA 101
● COMPSCI 186

Feel free to talk with me about the Data Science Major!

