
SQL 1
August 1, 2023

Antonio Kam

Who am I?

- Hi I’m Anto (he/him/his)
- I like cats
- I like cubes

Announcements
● Scheme Project

○ Checkpoint 1 (Phase 1) due today

○ Checkpoint 2 (Phase 2 & 3) due Friday

○ Project due 8/8 (Tuesday)

○ My recommendation - get the project done by/before the weekend - OH

will be more busy Monday/Tuesday

■ Project Parties

● Scheme Art Contest

● Less than 2 weeks until the final

○ Only a couple more assignments!

Declarative Programming

Declarative Programming

Today, we will dive deeper into declarative programming

- In declarative languages such as Regex and SQL, we just told the
computer the expression and it found a match. We didn’t tell it how to
do that, it just figured it out

- In imperative languages such as Python and Scheme, we tell the
computer the steps that we want it to do, and it’ll evaluate the steps
that you wrote as is

- Today, we will see another declarative language used primarily for
working with data

Imperative vs. Declarative

- With SQL, you won’t need to worry about how it decides to handle your
queries.

- All you need to do is give it instructions for what you want, and under
the hood, SQL will find a way to give the result to you.

 Poll

Imperative vs. Declarative

We are going out to dinner and we need a table

Option 1:

I’m going to look through the reservation book , see if there are any open
slots currently that are available. Then confirm that these tables are for 2
people and are available for 90 minutes. Finally, ask the waitress for that
table because you know it works

Option 2:

Table for 2 please.

SQL

 Poll

SQL

Who here has heard of SQL?

Who here has worked with SQL?

 Poll

SQL

We are going to look more at declarative programming through tables -
something that you might have seen before in Google Sheets, Data 8
(through the datascience module), or somewhere else!

SQL (Structured Query Language) is a language that interacts with a
database management system (DBMS)

They allow you to store data in a structured way, update it, and query it
while optimizing these operations

Relational Databases

SQL deals with relational databases which are tables that have data that
are often related to each other

Each of these tables are made of up columns and rows of data and they
tables can be related and connected

For example, if I’m a restaurant, I might have multiple tables:

- Table 1: Keeps track of the menu: names, prices
- Table 2: Keeps track of orders: Items ordered, total bill price

The structure is very similar to OOP (each table is a different object), but
when you need to combine the data together, SQL will let you do that

Columns have a name
and a type of value

Rows have values
for each column

Tables have rows and
columns

Tables

city latitude longitude

Berkeley 38 122

Cambridge 42 71

Minneapolis 45 93

SQL Overview

- In SQL, there are a few keywords that you’ll see often. These are
keywords that you’ll often think of when working with data

- A select statement will either create a new table from scratch, or grab
data from another table

- The create table keyword gives a global name to a table (example
later)

- Some other keywords (will see later): where, order by, limit, etc.

How do I make that in SQL?

SELECT statements create a new table, either by creating one from
scratch or taking from an existing table

CREATE TABLE assigns a table to a global name

UNION concatenates tables together to make bigger ones

All statements in SQL must end with a semicolon

CREATE TABLE cities AS
 SELECT “Berkeley” AS city, 38 AS latitude, 122 AS longitude UNION
 SELECT “Cambridge” , 42 , 71 UNION
 SELECT “Minneapolis” , 45 , 93;

 Demo

How do I make that in SQL?

CREATE TABLE cities AS
 SELECT “Berkeley” AS city, 38 AS latitude, 122 AS longitude UNION
 SELECT “Cambridge” , 42 , 71 UNION
 SELECT “Minneapolis” , 45 , 93;

city latitude longitude

Berkeley 38 122

Cambridge 42 71

Minneapolis 45 93

Working with SQL

If you want to experiment with SQL, code.cs61a.org has an SQL interpreter
that you can use with built-in tables

Additionally, if you want to experiment more, sqlite is a Python library that
lets you work with SQL within your own Python programs

In this lecture, I’ll be using DataGrip to interact with my tables. It’s pretty
hard to set up, so please don’t worry about setting it up - code.cs61a.org
is more than enough for your use cases!

https://code.cs61a.org
https://www.jetbrains.com/datagrip/

Wait… is it pronounced S Q L or Sequel?

Querying Data

Similar to what we saw with lists, creating a table is great, but we need to
be able to read the data from that table

In SQL, we can just extract all the data from the table, but we can also
select certain columns, do arithmetic operations on the columns, and
much more!

Select Statements

SELECT statements are going to be the most powerful tool that we have in
this class

We saw earlier that it can create tables but it also is how we query from
tables

SELECT will return 0 or more rows that match our query (remember, the
computer figures out which rows to return)

 Demo

Code to copy over if needed

CREATE TABLE cities AS
 SELECT “Berkeley” AS city, 38 AS latitude, 122 AS longitude UNION
 SELECT “Cambridge” , 42 , 71 UNION
 SELECT “Minneapolis” , 45 , 93;

 Demo

Examples of Select

Return all rows of the tables
SELECT * FROM cities;

(The * means get everything (in this case, every column))

Return the city and the latitude from all rows in cities
SELECT city, latitude from cities;

Rename columns in the returned table
Select latitude as lat, longitude as lon FROM cities;

Manipulate the column value
select city, longitude * 1000 as long_lon from cities;

How case sensitive is SQL?

Not very! Typically people use capital letters from the keywords and
lowercase for the rest.

Extending SQL

Optional Clauses for Select

So far, we have been able to get different columns from the table, but
haven’t really been able to do much more.

Now, we will talk about the optional clauses for the SELECT statement.
With more of these clauses, we will see more and more of the use cases
of SQL!

Example Table

item price

Beef Brisket Noodle
Soup 13.99

House Special Beef Rib 18.99

Lamb Brisket Rice Bowl 13.99

Chef Special Hand
Pulled Lamb Shank 20.99

Lamb Noodle Soup 14.99

A sample of the menu from Noodle Dynasty

Table name: menu

Code to create the table above

create table menu as

 select 'Beef Brisket Noodle Soup' as item, 13.99 as price union

 select 'House Special Beef Rib', 18.99 union

 select 'Lamb Brisket Rice Bowl', 13.99 union

 select 'Chef Special Hand Pulled Lamb Shank', 20.99 union

 select 'Lamb Noodle Soup', 14.99;

First Motivation: if
One thing that we might want to do is only select certain rows that match
a condition.

For example, let’s say I wanted to only show items from the menu table
that cost less than $15. With what we’ve seen so far in SQL, there isn’t a
way to do that.

item price

Beef Brisket Noodle
Soup 13.99

House Special Beef Rib 18.99

Lamb Brisket Rice Bowl 13.99

Chef Special Hand
Pulled Lamb Shank 20.99

Lamb Noodle Soup 14.99

Where

Thankfully, we have the WHERE clause!

The WHERE clause will allow you to filter rows

Output all rows and columns in the menu where the item costs less than $15
SELECT * FROM menu WHERE price < 15;

Output the name of the item if the item costs less than $15
SELECT item FROM menu WHERE price < 15;

Output the names of the items where the item costs between $14 and $20
SELECT item FROM menu WHERE price > 14 AND price < 20;

 Demo

Second Motivation: sorting

One other thing that you might see with the menu table is that it’s pretty
messy. We can’t take a quick glance and know what the cheapest/most
expensive item on the menu is.

To fix this, we can sort our data by increasing/decreasing price.

item price

Beef Brisket Noodle
Soup 13.99

Lamb Brisket Rice Bowl 13.99

Lamb Noodle Soup 14.99

House Special Beef Rib 18.99

Chef Special Hand
Pulled Lamb Shank 20.99

 Demo

Order By

ORDER BY will let you specify the order of the rows

Return the rows sorted by the price (highest to lowest)
SELECT * FROM menu ORDER BY price DESC;

Return the rows sorted by the price (lowest to highest)
SELECT * FROM menu ORDER BY price ASC;

Return the rows sorted by the name and price
SELECT * FROM menu ORDER BY name DESC, price DESC;

Third Motivation: smaller output

Some tables have a lot of rows - one issue is that we might not want to
display all rows (we might only want to see the top 3 items by price, for
instance)

item price

Beef Brisket Noodle
Soup 13.99

Lamb Brisket Rice Bowl 13.99

Lamb Noodle Soup 14.99

House Special Beef Rib 18.99

Chef Special Hand
Pulled Lamb Shank 20.99

 Demo

Limit

The LIMIT clause limits the number of rows that are output.

Return the menu item with the highest price
SELECT item FROM menu ORDER BY price DESC LIMIT 1;

Return the top 3 menu item in terms of lowest price
SELECT item FROM menu ORDER BY price ASC LIMIT 3;

 Demo

Combining it together

So far, we’ve only really seen examples of WHERE, ORDER BY, and LIMIT
being used by themselves, but we haven’t seen too many examples of
them being used in conjunction

SQL has a specific order for each keyword:

SELECT ___ FROM ___ WHERE ___ ORDER BY ___ LIMIT ___

WHERE has to appear before ORDER BY, which has to appear before
LIMIT. This is true for every single SQL query.

Remember that SQL is a declarative language - SQL will find a way to
output the query that you want. All you need to do is describe what you
want based on the syntax

Break

SQL Joins

Motivation

So far everything that we’ve seen can be easily done in a spreadsheet
(these are operations that can be found in Google Sheets once you know
your way around things)

SQL starts getting far more powerful once you get to more of the
SQL-related features.

If you have two separate tables that you want to combine together, SQL
ends up being very good for this task!

Combining Related Tables

Typically, you want to keep tables relatively simple and join them together,
instead of just storing everything in 1 table

Storing everything in 1 table ends up taking far more space than storing
them as two smaller tables. (Think about how data is stored in a table
(row * columns))

For reference, some companies can have tens if not hundreds of
thousands of tables in their system

 Poll

Joining Tables

The way we join tables in CS 61A is to do a complete join of all the rows.
This means every row from table 1 is matched with every row from table 2
and all the columns are kept

Table 1 has 3 columns and 50 rows. Table 2 has 5 columns and 3 rows.

How many rows does the joined table have?

8 columns, 150 rows

Joining Tables

city latitude longitude

Berkeley 38 122

Cambridge 42 71

Minneapolis 45 93

city latitude longitude

Berkeley 38 122

Cambridge 42 71

Minneapolis 45 93

Joining Tables

city latitude longitude city latitude longitude

Berkeley 38 122 Berkeley 38 122

Cambridge 42 71 Berkeley 38 122

Minneapolis 45 93 Berkeley 38 122

Joining Tables

city latitude longitude city latitude longitude

Berkeley 38 122 Berkeley 38 122

Cambridge 42 71 Berkeley 38 122

Minneapolis 45 93 Berkeley 38 122

Berkeley 38 122 Cambridge 42 71

Cambridge 42 71 Cambridge 42 71

Minneapolis 45 93 Cambridge 42 71

Berkeley 38 122 Minneapolis 45 93

Cambridge 42 71 Minneapolis 45 93

Minneapolis 45 93 Minneapolis 45 93

 Demo

Problem with Joining

The main issue with this type of joining is that a lot of the rows that we
created are not useful. If i’m trying to join the Championships and
Competitions table, I will end up with a lot of unrelated rows

(demo)

This means that almost always with joins we will need a WHERE to filter
out these junk rows

Column Names when Joining

Sometimes we will get lucky and have no repeating column names, but
most of the time we won’t be so lucky

If there is a id column in each table, in the WHERE or SELECT , how do I
know which one I am accessing?

In SQL, we can alias tables, similar to how we would rename columns, so
we can refer to a column from a specific table in our statements and
clauses

 Demo

Aliasing

In this example, I am joining a table with itself so I will have overlapping
column names. Aliasing the tables lets me specify which columns I want
to filter and which columns I want in my returned table

Summary

● SQL is a declarative language that deals with tables, a structure with
columns and rows

● We can create SQL tables, but we can also query from existing tables
to find useful information

● SELECT statements are our best friends in both of these tasks and
have a bunch of optional clauses to make them more powerful

