
Lecture 23: Regular
Expressions
July 31st, 2023

Jordan Schwartz

Announcements
● Lab11 due tomorrow
● Scheme Released

○ Checkpoint 1 due tomorrow, Tuesday, 8/1
○ Checkpoint 2 due Friday, 8/4
○ Whole project due next Tuesday 8/8. EC for submitting one day early 8/7.

● Please submit to the correct Scheme autograder!
● Hw05 recovery released (later today)!
● Final exam on 8/10 6-9 PM

○ Submit exam alteration form by Sunday 8/6

https://go.cs61ao.rg/exam-alts

Regular Expressions

Declarative programming (again!!)
A regular expression (aka: regex) is a sequence of characters
that specifies a pattern, usually utilized by string searching
algorithms

Regular expressions, as they are typically used, are a great
example of declarative programming

—we can use a regular expression to specify a pattern that
we want to find within a string, and then we give that
pattern to a search algorithm to find the pattern for us

RegEx is not a programming language. It's a standard that is
implemented within many modern programming languages
(including Python!), because string search is a common
problem

Motivation
Imagine we want to solve any of these problems:

● Extract all the dates from a piece of text
● Find all the URLs in an email so we can convert them to hyperlinks
● Clean up code you wrote by removing trailing whitespace from the

end of every line

All of these problems involve finding substrings in a longer string that
fit a certain pattern, but doing exact string matching won't work

RegEx allows us to systematically describe patterns for these kinds of
problems, that we can then pass off to pre-implemented algorithms

Of all the topics we learn in this course, RegEx is probably the one I
personally use most in my life

Matching exact strings
Regex is composed of characters that form a pattern

These characters match some strings

Let’s take a look at an example: https://regex101.com/

(Demo)

https://regex101.com/
https://regex101.com/r/fP6bvn/1

Matching exact strings - You try!
Most characters in RegEx will match exactly the characters
as they appear in the expression

(the highlighting doesn’t imply or mean anything other than it
is easier for me to read)

Expression: abcabc

abcabc
abdabc
abcab

Matching exact strings
Most characters in RegEx will match exactly the characters
as they appear in the expression

Expression: abcabc
Fully matched by: abcabc

Not fully matched by: abdabc, abcab

However, some characters in RegEx have reserved meanings,
and so must be escaped with the backslash character if
you're interested in the character itself: \ () [] { } +
* ? | $ ^ .

Expression: \{abc\}
Fully matched by: {abc}

The dot character
In RegEx, the . character is a reserved character that will
match any single character that is not a new line

Expression: .a.a.a
Fully matched by: banana, aaaaaa, +a-a!a

“Any non newline character followed by a lowercase ‘a’
followed by any non newline character followed by a

lowercase ‘a’ followed by any non newline character followed
by a lowercase ‘a’”

Custom Character Classes
Character classes match any of a set of characters—one
instance of a character class will match exactly one character

Expression: [ab]c[ab]c
Fully matched by: acac, bcac, acbc, bcbc

Not fully matched by: aacac, accc

Expression: [a-z][0-9]
Fully matched by: a0, b8, z0, g5

“Any lowercase letter followed by any singular digit number”

Similar to this pseudo code:
Match if equal to exactly one of the characters in the bracket

Order matters

Common Character Classes
We have some shorthands for common character classes

. matches any non-newline character

\d matches digits, equivalent to [0-9]

\w matches "word characters", equivalent to [A-Za-z0-9_]

\s matches whitespace characters (spaces/tabs/line breaks)

[^] matches any character except whatever comes after ^

\D matches any non-digit character (opposite of \d)
\s and \w also have \S and \W as opposites

Character classes: Examples
Expression: [^ab]c

Fully matched by: cc, zc, !c, c
Not fully matched by: ac, bc

“Any singular character that is not an a or a b followed by a c”

Expression: \(\d\d\d\) \d\d\d-\d\d\d\d
Fully matched by: (951) 262-3062

“An open parenthesis followed by a digit, a digit, a digit,
followed by a closed parenthesis, followed by a whitespace, a
digit, a digit, a digit, a dash, a digit, a digit, a digit, and a digit”

Quantifiers
Quantifiers allow us to specify multiple occurrences of the same
character or character class

a* zero or more occurrences of a

a+ one or more occurrences of a

a? zero or one occurences of a

a{2} two occurrences of a

a{2,4} two, three, or four occurrences of a

a{2,} at least two occurrences of a

In my experience, of everything you see in this lecture, + and * are
the ones I've used the most

Quantifiers: Examples
Expression: a*b

Fully matched by: b, ab, aaaaaaaaaaaab
“Zero or more lowercase a’s followed by a lowercase b”

Expression: a+b
Fully matched by: ab, aaaaaaaaaaaab

Not fully matched by: b
“At least one lowercase a followed by a lowercase b”

Expression: \(\d{3}) \d{3}-\d{4}
Fully matched by: (951) 262-3062

“An open parenthesis followed by 3 digits, a closed
parenthesis, a whitespace, 3 digits, a dash, and 4 digits”

Combining patterns
The pipe | operator matches either the expression on its left
or its right

Expression: \d+|Inf
Fully matched by: 78947892, Inf

Not fully matched by: 78947892Inf

“Either at least one digit, OR a capital I followed by a
lowercase n and a lowercase f” → exclusive or

You can also use parentheses () to group expressions

Expression: (<3)+
Fully matched by: <3, <3<3<3<3<3

Combining patterns
You can also use parentheses () to group expressions

Expression: (<3)+
Fully matched by: <3, <3<3<3<3<3

(Demo)

https://regex101.com/r/AOtRhk/1

Anchors
Anchors are unique in that they don't match
characters—instead, they match positions in a string where
an expression could land

^ matches the beginning of a string

$ matches the end of a string

\b matches a "word boundary" (whitespace, punctuation)

(Demo)

https://regex101.com/

Note

Yes, “^” has 2 separate meanings in regex:

[^a] → inverse

^a → start of string

Regular Expressions in Python

The re module
Python has a module called re that supports regular
expressions for strings!

This is common—many programming languages have some
level of built-in support for regular expressions

>>> import re
>>> bool(re.search(r"\d+", "123 peeps"))
True
>>> bool(re.search(r"\d+", "So many peeps"))
False

Raw strings
Python has escape characters built in to string evaluation, such as the
newline character

>>> print("hello\nthere!")
hello
there!

Regular expressions also use the backslash character, but we don't want
the Python interpreter to treat these as Pythonic escape characters. Raw
strings allow us to use backslashes without worrying about this

>>> print(r"hello\nthere!")
hello\nthere!

Evaluation rules for raw strings are confusing, and we won't test you on
them—the important thing for you to know is that if you're writing a
regular expression, you should use a raw string rather than a regular
string

Match objects
The re module has methods that attempt to match a pattern to a
string—if they find a match, they'll return a Match object (truthy),
and if they don't, they'll return None (falsey)

re.search(<pattern>, <string>)
Returns a Match object representing the first occurrence of
<pattern> in <string>

re.fullmatch(<pattern>, <string>)
Returns a Match object, requiring that <pattern> entirely
match <string>

re.match(<pattern>, <string>)
Returns a Match object, requiring that <string> must start
with a substring that matches <pattern>

Match objects: Examples
>>> x = "This string contains 35 characters."
>>> mat = re.search(r'\d+', x)
>>> mat
<re.Match object ...>
>>> mat.group(0)
'35'
>>> mat2 = re.search(r'\d{3,}', x)
>>> mat2
>>> # Returned None :0

Capturing groups
When we use parentheses to group sub-expressions, they define capture
groups that we can then access individually

>>> x = "There were 12 pence in a shilling and 20
shillings in a pound."
>>> mat = re.search(r'(\d+)[a-z\s]+(\d+)', x)
>>> mat.group(0)
'12 pence in a shilling and 20'
>>> mat.group(1)
'12'
>>> mat.group(2)
'20'
>>> mat.groups()
('12', '20')

Capturing groups are super cool and helpful, but we won't test you on
them in this class

Other re functions
These are functions from the re module that don't return match
objects

re.findall(<pattern>, <string>)
Returns a list of all substrings within <string> that match
<pattern>, read from left to right

re.sub(<pattern>, <repl>, <string>)
Returns <string>, but with all instances of <pattern>
replaced with <repl>

Examples!

Trimming whitespace
This is based on something real that one of our staff members had
to do lol

For formatting reasons, programmers tend to not like whitespace
on the end of lines

Our website base actually has a built-in check that won't let you
commit edits if there's trailing whitespace, which is the source of
much pain for our content team

Trimming whitespace
import re

in_f = open('example.txt', 'r')
lines = in_f.readlines()
^ reads in lines of a file as a list of strings
lines = [re.sub(r'\s+$', '', l) for l in lines]
out_f = open('fixed.txt', 'w')
out_f.writelines(['\n' + l for l in lines])
in_f.close()
out_f.close()

This is a script that trims whitespace, but we can also do it with
find + replace in VS Code!

Batch processing files
This is also a real example from Cooper’s thesis! They had a bunch
of files that looked like this:

Every file name is of the format

sp<speaker_id>_s<sentence_id>_r<rep_#>.wav

Where that file is a recording of speaker <speaker_id> reading
sentence <sentence_id>, and it's their <rep_#> iteration reading it
(which doesn't matter very much)

Batch processing files
import glob
import re
from parselmouth import Sound

wav_files = glob.glob("*.wav")
^ generates a list of all file names that end in .wav
sounds_by_id = {}
for w in wav_files:

mat = re.fullmatch(r"sp(\d{5})_s(\d{1,2})_r\d\.wav", w)
assert mat is not None, "Must match file format"
speaker_id, sentence_id = mat.groups()
if speaker_id not in files_by_id:

files_by_id[speaker_id] = {}
sounds_by_id[speaker_id][sentence_id] = Sound(w)

Formal Language Theory

Center embedding
Try to write a regular expression to match these strings:

b
abc

aabcc
aaabccc

aaaaaaaaaabcccccccccc

I.e., there are n a's, then one b, and then exactly n c's

Context-free grammars (CFGs)
That problem is actually technically impossible, at least with regex

You can formally prove it, but you need to use some math that
we're not really going to talk about in this class

Basically, regular expressions don't have "memory"—if I match 10
instances of the letter a, regular expressions don't have a way to
remember that so that it can then match exactly 10 instances of
the letter c

We can, however, do this with a different kind of pattern called a
context-free grammar:

START ==> ABC
ABC ==> "a" + ABC + "c"
ABC ==> "b"

The Chomsky Hierarchy
The Chomsky Hierarchy is an idea in formal language theory that
we can use to classify what are called formal grammars

At the very bottom are regular grammars, like regular expressions,
and context-free grammars are one step up from these

At the top are recursively enumerable grammars, which can fully
model the behavior of a computer

BNF
Although you need a recursively enumerable grammar to fully
model computation, you can specify syntax for programming
languages using a CFG!

Backaus-Naur Form is a schema designed specifically for
describing the syntax of programming languages using
context-free grammars

BNF has been taught formally in previous iterations of this
class, but it's out of scope this semester dw

BNF for (part of) Calculator
?start: calc_expr
?calc_expr: NUMBER | calc_op
calc_op: "(" OPERATOR calc_expr* ")"
OPERATOR: "+" | "-" | "*" | "/"

If I make a really good CFG for the Scheme language, I can actually
pass a BNF grammar into an algorithm to make my parser, which
would have saved you a lot of work in Lab 9

BNF for (part of) English
?start: sentence
sentence: noun_phrase verb
noun: NOUN
noun_phrase: article noun
article : | ARTICLE
verb: VERB
NOUN: "horse" | "dog" | "hamster"
ARTICLE: "a" | "the"
VERB: "stands" | "walks" | "jumps"
%ignore /\s+/

Really big CFGs :0

(From CS 288 lecture slides)

Review
Regular expressions are a way to define patterns that allow
us to match strings in specified ways

Python has an re module that you can use to employ regular
expressions in the language

You can't do everything with regex—there are, however, more
powerful grammars that can specify more complex forms

In this class, you only need to worry about a couple of things:

● How to write a regular expression to match a given pattern
● How to read a regex and know whether it matches a string
● How to read Python code that uses regular expressions

Tips
Do not memorize everything—have the docs in front of you, and as
you use them with practice you'll get comfortable finding where
things are

RegEx can be really hard to debug—make sure you're being
methodical, and breaking a bigger problem up into smaller pieces
(just like any other kind of programming!) is often a great strategy

If you use RegEx in the real world, be wary of long and complicated
regular expressions—these can be hard to read for other
developers, and often can have sinister bugs or edge cases

Also, keep in mind that there's no guarantee of any level of
efficiency with pre-packaged RegEx algorithms

