
Lecture 22: Scheme Data
Abstraction
July 27th, 2023

Jordan Schwartz

Announcements
● Lab 10 due Today, Thursday 7/27
● Ants due Tomorrow, Friday 7/28

○ Due today, Thursday, 7/27 for EC
● Homework Recovery for HW 4 is due Monday 7/31
● Scheme project will be released Tomorrow, Friday 7/28
● Exam Logistics

○ https://go.cs61a.org/exam-alts
● Mega Section Videos will be delayed today
● No recorded version of this lecture

https://go.cs61a.org/exam-alts

Data Abstraction

Abstraction

I know cars exist. To drive, I need to know how to put it into drive, where
the gas pedal is, and where the brake pedal is. Doesn’t really matter what
it looks like, as long as they are in the correct place, I can drive the car:

There exist differently engineered mechanisms for car engines and brakes

It doesn’t really matter which one the car has though in order to know how
to operate it.

The car will go when the gas pedal is pressed, the car will stop when the
brakes are pressed.

Data Abstractions

The same concept exists in code. Multiple ideas can be combined into
one value:

● A car is composed of gas pedal and brake that make an engine go
and stop

● A date can be made from a year, a month, a day
● A linked list can be formed from a first value, a rest (either another link

or Link.empty)
● A location can be made from a latitude and a longitude

In Python we can use data abstractions (like tree) and OOP (like Tree) to
store these types of compound values. Scheme doesn’t have OOP.

Can you think of any other data types we’ve discussed so far in this class
that may fall under this category?

Data Abstractions

The same concept exists in code. Multiple ideas can be combined into
one value:

In Python we can use OOP or dictionaries to store these types of
compound values. Scheme doesn’t have OOP or dictionary data types.

Data abstractions allow us to group compound values as units. A user
doesn’t need to worry about how it is implemented as long as it acts as
expected

My car can have disc brakes or drum brakes, but as long as the brake
pedal slows the car to a stop, it doesn’t matter which one the car has!

Group - A Scheme Data Abstraction

If we wanted to group data into “groups” of values, we could use a group data
abstraction - the concept of a group. Many things can be made with a group!
● (group first-val second-val) constructs a new group from 2

arguments

○ acts like the __init__ method in a Python class

● (first group-obj) accesses and returns the first value in the given
group data abstr.

● (second group-obj) accesses and returns the second value in the given
group data abstr.

○ selectors act like instance attributes in a Python class, however they are
external

○ Methods are internal, inside a Python class, and can access the internal
self attribute

○ Scheme selector procedures are external and need a data abreaction
passed in

Group - A Scheme Data Abstraction

If we wanted to group data into “groups” of values, we could use a group data abstraction
with the concept of a group. Many things can be made with a group!

(define my-location (group 37.8721 122.2578))

scm> (first my-location)
37.8721
scm> (second my-location)
122.2578

Does group look similar to any other data types we know of?

(define common-pets (group ‘dog ‘cat))

scm> (first common-pets)
dog
scm> (second common-pets)
cat

Implementation

Does it matter how group is stored behind the scenes? Only the person
who makes the abstraction needs to know and decide how to implement it
as long as the constructor and selectors work as expected!

(define (group first-val second-val) ; constructor

)

(define (first group-obj) ; selector

)

(define (second group-obj) ; selector

)

Implementation

Does it matter how group is stored behind the scenes?
Only the person who makes the abstraction needs to know and decide
how to implement it!

(define (group first-val second-val)

(cons first-val (cons second-val ‘()))

)

(define (first group-obj)

(car group-obj)

)

(define (second group-obj)

(car (cdr group-obj))

)

How else could it
be implemented?

Implementation

Only the person who makes the abstraction needs to know and decide
how to implement it!

(define (group first-val second-val)

(list ‘first first-val ‘second second-val)

)

(define (first group-obj)

(car (cdr group-obj))

)

(define (second group-obj)

(car (cdr (cdr (cdr group-obj))

)

How else could it
be implemented?

Implementation

You could even go so far as to write it in another language, as long as it
behaves as expected. Abstract data types exist in Python as we’ve seen.

def group(first_val, second_val):

return [first_val, second_val]

def first(group_obj):

return group_obj[0]

def second(group_obj):

return group_obj[1]

How else could it
be implemented?

Implementation

It doesn’t matter the implementation the developer chooses to use as long
as it acts as expected:

(define my-location (group 37.8721 122.2578))

scm> (first my-location)

37.8721

scm> (second my-location)

122.2578

Vocab Overview

● Data Abstraction: groups compound information into units to be
accessed and manipulated. Ex: dates, locations, linked lists, trees

● Constructor: a procedure that creates a data abstraction. Ex: (group
first-val second-val)

● Selector: a procedure that accesses and returns some information
when a data abstraction is passed into it. Unlike in Python classes,
this is a separate procedure and does not have internal access to the
data abstraction like self. Ex: (first group-obj)

● Documentation: Information or instructions that describe how a data
abstraction work

● Implementation: How a data abstraction is coded behind the scenes

Example

Rational numbers aka fractions

One way fractions can be represented is:

So one half = 0.5 =

What if I wanted to store exact fractions in scheme?

In Python we might make a data abstraction or a class. In Scheme we can
make a data abstraction!

Rational Numbers Documentation

Similar to group, we could create some abstraction to access the different
parts of the fraction we want to store:

Constructor (rational n d) Creates a new rational number
instance

Selectors (numer r) Accesses and returns the
numerator of the given rational
number

(denom r) Accesses and returns the
denominator of the given rational
number

The constructor acts like the __init__ method in a Python class
The selectors act as instance attributes in a Python class, however
they are external

Rational Numbers Construction

Now we can store fractions!

But what if I want to display them or do arithmetic operations with them?
I’d need to access their data - numerators and denominators

(define half (rational 1 2))

scm> (numer half)

1

scm> (denom half)

2

Rational Numbers Utilities

What if I want to view it in a pretty format?

What if I want to check if two rationals are equal? This includes if they are not
simplified but have the same value

(define (print-rational x)
 (print (numer x) '/ (denom x))
)
scm> (print-rational (rational 3 2))
3 / 2

(define (rationals-are-equal x y)
 (= (* (numer x) (denom y))
 (* (numer y) (denom x))
)
)

scm> (rationals-are-equal (rational 3 2) (rational 6 4))
#t

Rational Number Arithmetic

Rational Number Multiplication Code

Using the rational data abstraction from above, let’s implement
multiplication!

(define (mul-rational x y)

 (rational

 (* (numer x) (numer y))

 (* (denom x) (denom y))

)

)

scm> (print-rational (mul-rational (rational 1 2) (rational 3 4)))

3 / 8

Rational Number Addition Code

Using the rational data abstraction from above, let’s implement addition!

(define (add-rational x y)

 (rational

 (+

(* (numer x) (denom y))

(* (numer y) (denom x))

)

 (* (denom x) (denom y))

)

)
scm> (print-rational (add-rational (rational 1 2) (rational 3 4)))

10 / 8

Rational Numbers Implementation

One way to store a rational could be with lists in Scheme.

; Construct a rational number that represents N/D
(define (rational n d)
 (list n d)
)

; Return the numerator of rational number R.
(define (numer r)
 (car r)
)

; Return the denominator of rational number R.
(define (denom r)
 (car (cdr r))
)

User Programs

I am the developer of rational (well, not originally, but in this scenario)! I
chose the implementation, the procedures I wanted to include, etc. But
what if I wanted to send out rational to the world so others could use it
too?

I would need to specify what the constructor, the selectors, and
procedures are for. Others could then use it without know how it was
implemented!

They can also create their own programs with the rational data
abstraction for their own needs:
; Return 1 + 1/2 + 1/3 + ... + 1/N as a rational number.
(define (nth-harmonic-number n)
 (define (helper rat k)
 (if (= k (+ n 1)) rat
 (helper (add-rational rat (rational 1 k)) (+ k 1))
)
)
 (helper (rational 0 1) 1)
)

Break!

Abstraction Barriers

Abstraction Barriers - They’re technically not new!

You’ve been working with abstraction for a while now – assuming the Tree
class and the Linked List class work as intended.

Assuming branches is a list of tree objects

When working with the Tree class you only ever call Tree(label, branches),
t.label, t.branches, and is_leaf(t)

When working with the Linked List class you only ever call Link(first, rest),
lnk.first, lnk.rest, Link.empty

The same principles apply to Scheme data abstractions – only use the
definitions and procedures you are given! Don’t assume anything

Layers

Each layer only uses the layer below it

User Program (nth-harmonic-number n)

Data Abstraction (add-rational x y)
(mul-rational x y)
(print-rational r)
(are-rationals-equal x y)

(rational n d)
(numer r) (denom r)

Primitive Representation (list n d)
(car r) (car (cdr r))

Violating Abstraction Barriers
What’s wrong with:

We may know how rational is implemented, but we aren’t allowed to use
that to our advantage.

(add-rational (list 1 2) (list 1 4))

; Doesn't use constructor!

(define (divide-rationals x y)

 (define new-n (* (car x) (car (cdr y))))

 (define new-d (* (car (cdr x)) (car y)))

 (list new-n new-d)

)

; Doesn't use constructor or selectors!

Other Implementations

You often times won’t actually be the developer and may not actually
know how a data abstraction works under the hood (eg. .append(),
.extend(), add in Python)

Rational could also use an entirely different underlying representation.

; Construct a rational number
; that represents N/D
(define (rational n d)

 (define (choose which)

 (if (= which 0) n d)

)

 choose

)

; Return the numerator of
; rational number R.
(define (numer r)

 (r 0)

)

; Return the denominator of
; rational number R.
(define (denom r)

 (r 1)

)

Other Implementations

It could even use another abstraction!

; Construct a rational number that represents N/D
(define (rational n d)
 (group n d)
)

; Return the numerator of rational number R.
(define (numer r)
 (first r)
)

; Return the denominator of rational number R.
(define (denom r)
 (second r)
)

Violating Abstraction Barriers

But what if the user-defined program assumed what the underlying
representation was?

Could we, the developers, change our representation?

It would break their code!

Additionally, without using abstraction, your code would get super
repetitive.

Tree Abstraction

Tree Abstraction Documentation
What do we need to create and access the parts of a tree?

Python Data
Abstraction

Python Class Scheme

def tree(label,
branches=[])

class Tree
__init__(self, label,
branches=[])

(tree label
branches)

Returns a tree with root
label and list of branches

label(t) t.label (label t) Returns the root label of t

branches(t) t.branches (branches t)
Returns the branches of t
(trees)

is_leaf(t) t.is_leaf() (is-leaf t)
Returns true if t is a leaf
node.

Tree Abstraction Documentation
What do we need to create and access the parts of a tree?

(define t
 (tree 3
 (list (tree 1 nil)
 (tree 2 (list (tree 4 nil)

(tree 5 nil))))))

scm> (label t)
3

scm> (is-leaf t)
#f

scm> (branches t)
<code omitted>

3

1 2

4 5

1 2

4 5

Tree Abstraction Implementation

Each tree is stored as a list where the first element is the label of that
node and subsequent elements are branches (each branch must also be a
tree object!).

(define t
 (tree 3
 (list (tree 1 nil)
 (tree 2 (list (tree 4 nil) (tree 5 nil))))))

3

1 2

4 5

(3 (1) (2 (4) (5))) (3 (1) (2 (4) (5)))

(define (tree label branches)
 (cons label branches))

(define (label t) (car t))

(define (branches t) (cdr t))

(define (is-leaf t) (null? (branches t)))

Let’s practice!

Label Doubling
(define (double tr)

 ; Returns a tree identical to TR, but with all labels doubled.

)

(define tree1
 (tree 6
 (list (tree 3 (list (tree 1 nil)))
 (tree 5 nil)
 (tree 7 (list (tree 8 nil) (tree 9 nil))))))

(expect tree1 <code omitted, left tree below>)
(expect (double tree1) <code omitted, right tree below>)

6

3 7

8 9

5

1

12

6

16 18

10

2

14

Label Doubling
(define (double tr)
 ; Returns a tree identical to TR, but with all labels doubled.

)

(define tree1
 (tree 6
 (list (tree 3 (list (tree 1 nil)))
 (tree 5 nil)
 (tree 7 (list (tree 8 nil) (tree 9 nil))))))

(expect tree1 <code omitted, left tree below>)
(expect (double tree1) <code omitted, right tree below>)

6

3 7

8 9

5

1

12

6

16 18

10

2

14

(tree)(label tr)(* (label tr) 2) double (branches tr)(map)

More Scheme Practice

Even Subsets

Definition: a non-empty subset of a list s is a list containing some of the elements of s.

(A non-empty subset could contain all the elements of s, but not none of them.)

4
4

;;; Non-empty subsets of integer list s that have an
even sum
;;;
;;; scm> (even-subsets '(3 4 5 7))
;;; ((5 7) (4 5 7) (4) (3 7) (3 5) (3 4 7) (3 4 5))
(define (even-subsets s) ...)

A recursive approach: The even subsets of s include...

• all the even subsets of the rest of s

• the first element of s followed by an (even/odd) subset of the rest

• just the first element of s if it is even

(Demo
)

Discussion Question: Even Subsets Using Filter

Discussion Question: Complete this implementation of
even-subsets

;;; non-empty subsets of s
(define (nonempty-subsets s)
 (if (null? s) nil

 (let ((rest __________________________))
 (append rest
 (map (lambda (t) (cons (car s) t)) rest)
 (list (list (car s)))))))

;;; non-empty subsets of integer list s that have an even sum
(define (even-subsets s)

 (filter ________________________________ (nonempty-subsets s)))

4
6

(lambda (s) (even? (apply + s)))

(nonempty-subsets (cdr s))

Definition: a non-empty subset of a list s is a list containing some of the elements of s.

(A non-empty subset could contain all the elements of s, but not none of them.)

