
Interpreters

Hi! I’m Bryce (he / him)

About Me:

• Incoming EECS masters student from the Bay Area
• Recently graduated in CS + Data Science

• 5th semester on 61A staff (3rd time TA, 1st time
 Head TA)

2

Technical Interests:

• Current: Computer / Network Security
• Past: California education research,
 building web applications

Announcements

• Homework 5 and Lab 10 are due tomorrow (7/27)
• Ants project is due Friday (7/28), 1 EC for submitting by tomorrow (7/27)

• Please submit to the correct autograder!
• Homework 4 Recovery is released and due by Monday (7/31)
• Please complete the Midsemester Feedback form if you still haven’t!

• Form was linked on Lab 9 and is still open for submissions

3

Preface

Historically, interpreters have been a difficult topic for students

• We’ve been in your shoes before!

4

This lecture is meant to introduce what interpreters are

• You are not expected to understand everything after this lecture
• Will be reinforced in multiple lab/discussion sections (Discussion 9 + Lab 11) and your
 Scheme project

• Please ask questions as we go!

For security reasons, we can’t release the .py files for this lecture

• However, you’ll have coded your own version of today’s lecture after Lab 11 + Project 4

Programming Languages

Levels of Languages

High-level Language

(Python, Scheme, SQL, Java)

Assembly Language

(RISC-V Assembly, x86 Assembly)

Machine Language

(RISC-V Instruction Set, x86 Instruction Set)

6

Punchcard

7

Programming Languages

A computer typically executes programs written in many different programming languages

8

Machine languages: statements are interpreted by the hardware itself

• A fixed set of instructions invoke operations implemented by the circuitry of the
 central processing unit (CPU)

• Operations refer to specific hardware memory addresses; no abstraction mechanisms

High-level languages: statements & expressions are interpreted by another program or
compiled (translated) into another language

• Provide means of abstraction such as naming, function definition, and objects
• Abstract away system details to be independent of hardware and operating system

Compilers

Compilers: translate source code into machine code so that the machine code can be
distributed and run repeatedly

9

Source
Code OutputCompiler Machine

Code CPU

int a = (b + c) - (d + e);

C Code

add t1, s1, s2
add t2, s3, s4
sub s0, t1, t2

0000 0001 0010 0100 1000 0011 0011 0011
0000 0001 0100 1001 1000 0011 1011 0011
0100 0000 0111 0011 0000 0100 0011 0011

Assembly Language
(RISC-V)

Machine Language

Interpreters

10

Source
Code OutputInterpreter

Interpreters: run source code directly producing an output/value, without first compiling
it into machine code

• In 61A, we focus on interpreters
• Compilers are explored in future
 courses (61C, 162, 164, etc.)

a = (b + c) - (d + e)

Python Code

Evaluated!

Tradeoffs:

Source
Code

Understanding Source Code

In order to interpret source code, a parser must be written to understand that source code

11

Source
Code OutputInterpreter

In the context of interpreters:

Parser AST Evaluator
AST - Abstract Syntax Tree

•Represents the structure of the
source code in a tree

Parsing

Reading Scheme Lists

A Scheme list is written as elements in parentheses:

(<element_0> <element_1> ... <element_n>)

13

A Scheme list

Each <element> can be a combination or primitive

•Combination - another Scheme list
•Primitive - simplest instance in Scheme (number, boolean, etc.)

(+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (- 10 7) 6))

All call expressions in Scheme are represented by a Scheme list

Parsing

A Parser takes in text and returns an expression that represents the text in a
tree-like structure

14

Text ExpressionLexical
analysis Tokens Syntactic

analysis

Let’s break this down!

 '(+ 1'
 ' (- 2 3)'
 ' (* 4 5.6))'

'(', '+', 1
'(', '-', 2, 3, ')'
'(', '*', 4, 5.6, ')', ')'

Pair('+', Pair(1, ...))

(+ 1 (- 2 3) (* 4 5.6))
printed as

Parser

Lexical Analysis

Lexical analysis converts input text into a list of tokens

• Each token represents the smallest unit of information

15

 '(+ 1'
 ' (- 2 3)'
 ' (* 4 5.6))'

'(', '+', 1
'(', '-', 2, 3, ')'
'(', '*', 4, 5.6, ')', ')'

• Iterative process
• Processes one line at a time
• Checks for malformed tokens
• Determines types of tokens

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression

• Formal way of representing the tokens generated from lexical analysis
• Symbols can be “nested”

16

'(', '+', 1
'(', '-', 2, 3, ')'
'(', '*', 4, 5.6, ')', ')'

Pair('+', Pair(1, ...))

(+ 1 (- 2 3) (* 4 5.6))
printed as

What exactly is a Pair?

Pair Abstraction

A Pair is similar to a linked list!

17

'(', '+', 2, 3, ')' Pair('+', Pair(2, Pair(3, nil)))
Syntactic Analysis

We can also create nested expressions:

'(', '+', 5,
 '(', ‘*’, 2, 7, ')', ')'

Pair('+', Pair(5, Pair(
 Pair(‘*’, Pair(2, Pair(7, nil))), nil)))

Syntactic Analysis

(+ 2 3)

(+ 5 (* 2 7))

Generating Pairs

We define a function called scheme_read that will consume the input tokens for exactly one
expression.

• This expression can have nested expressions
• Recursive problem in nature
• Builds the Pair object for us

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them

18

Generating Pairs

19

'(', '+', 1, '(', '-', 2, 3, ')', '(', '*', 4, 5.6, ')', ')'

Pair('+', Pair(1,
 Pair(Pair(‘-‘, ...)), ...)

(Demo)

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression

• Formal way of representing the tokens generated from lexical analysis
• Symbols can be “nested”

20

'(', '+', 1
'(', '-', 23, ')'
'(', '*', 4, 5.6, ')', ')'

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))
printed as

• Recursive process
• Processes multiple lines
• Balances parentheses
• Returns tree structure

The Calculator Language

(You’ll implement this in Lab 11!)

Calculator Syntax

The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2 -4 5.6

A call expression is a combination that begins with an operator (+, -, *, /) followed by 0
or more expressions: (+ 1 2 3) (/ 3 (+ 4 5))

22

Expressions are represented as Scheme lists (Pair instances) that encode tree structures.

(* 3
 (+ 4 5)
 (* 6 7 8))

Expression

restfirst
*

restfirst
3

restfirst restfirst
nil

restfirst
+

restfirst
4

restfirst
5 nil

restfirst
*

restfirst
6

restfirst
7

restfirst
8 nil

Representation as PairsExpression Tree

* 3

+ 4 5 * 6 87

Expression Trees

We’ve seen expression trees before! Think back to Lecture 3 [Control]:

23

Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.

+: Sum of the arguments

*: Product of the arguments

-: If one argument, negate it. If more than one, subtract the rest from the first.

/: If one argument, invert it. If more than one, divide the rest from the first.

24

(+ 5
 (* 2 3)
 (* 2 5 5))

Expression Expression Tree

+ 5

* 2 3 * 2 55

506

61

(Demo)

Evaluation

The Eval Function

The eval function computes the value of an expression, which is always a number

In calculator, an expression is either a number or a Pair

26

def calc_eval(exp):

 if isinstance(exp, (int, float)):

 return exp

 elif isinstance(exp, Pair):

 arguments = exp.rest.map(calc_eval)

 return calc_apply(exp.first, arguments)

 else:

 raise TypeError

A number evaluates...

A call expression evaluates...

 to its argument values

 to itself

'+', '-',
'*', '/'

A Scheme list
of numbers

Recursive call
returns a number
for each operand

 combined by an operator

Implementation Language Semantics

(+ 5
 (* 2 3)
 (* 2 5 5))

Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values

In calculator, all operations are named by built-in operators: +, -, *, /

27

def calc_apply(operator, args):
 if operator == '+':
 return reduce(add, args, 0)
 elif operator == '-':
 ...
 elif operator == '*':
 ...
 elif operator == '/':
 ...
 else:
 raise TypeError

 Sum of the arguments
+:

Implementation Language Semantics

 ...
-:

...

(Demo)

Interactive Interpreters

Read-Eval-Print Loop

The user interface for many programming languages is an interactive interpreter

1. Read text input from the user

2. Parse the text input into an expression

3. Evaluate the expression

4. If any errors occur, report those errors, otherwise

5. Print the value of the expression and repeat

29

Input OutputParser Eval

Apply

Print

REPL

Raising Exceptions

Exceptions are raised within lexical analysis, syntactic analysis, eval, and apply

Example exceptions

• Lexical analysis: The token 2.3.4 raises ValueError("invalid numeral")

• Syntactic analysis: An extra) raises SyntaxError("unexpected token")

• Eval: An empty combination raises TypeError("() is not a number or call expression")

• Apply: No arguments to - raises TypeError("- requires at least 1 argument")

30

(Demo)

Handling Exceptions

An interactive interpreter prints information about each error

A well-designed interactive interpreter should not halt completely on an error,
so that the user has an opportunity to try again in the current environment

31

Break

Interpreting Scheme

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols (i.e. variables)

The Structure of an Interpreter

34

Apply

Eval

Recursive calls:
• Eval(operator, operands) of call expressions
• Apply(procedure, arguments)
• Eval(sub-expressions) of special forms (if, lambda, etc.)

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined procedures

Requires an
environment
for symbol

lookup

Creates a new
environment each time

a user-defined
procedure is applied

Special Forms

Scheme Evaluation

The scheme_eval function choose behavior based on expression form:

• Symbols are looked up in the current environment

• Self-evaluating expressions are returned as values

• All other legal expressions are represented as Scheme lists, called combinations

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Special forms
are identified
by the first
list element

Any combination
that is not a
known special
form is a call

expression

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

(demo (list 1 2))

36

Logical Forms

Logical Special Forms

Logical forms may only evaluate some sub-expressions

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expression: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

The value of an if expression is the value of a sub-expression:

• Evaluate the predicate

• Choose a sub-expression: <consequent> or <alternative>

• Evaluate that sub-expression to get the value of the whole expression

do_if_form

(Demo)

38

Quotation

Quotation

The quote special form evaluates to the quoted expression, which is not evaluated

(quote <expression>)

The <expression> itself is the value of the whole quote expression

'<expression> is shorthand for (quote <expression>)

The scheme_read parser converts shorthand ' to a combination that starts with quote

40

(Demo)

(quote (+ 1 2)) (+ 1 2)evaluates to the
three-element Scheme list

(quote (1 2)) '(1 2)is equivalent to

Lambda Expressions

Lambda Expressions

Lambda expressions evaluate to user-defined procedures

(lambda (<formal-parameters>) <body>)

(lambda (x) (* x x))

class LambdaProcedure:

 def __init__(self, formals, body, env):

 self.formals = formals

 self.body = body

 self.env = env

42

A scheme list of symbols
A scheme list of expressions
A Frame instance

Frames and Environments

A frame represents an environment that has variable bindings and a parent frame (if
not the Global frame)

Frames are Python instances with methods lookup and define

In Project 4, Frames do not hold return values

g: Global frame

y
z

3
5

f1: [parent=g]

x
z

2
4

43

(Demo)

Define Expressions

Define Expressions

Define binds a symbol to a value in the first frame of the current environment.

(define <name> <expression>)

(define (<name> <formal parameters>) <body>)

(define <name> (lambda (<formal parameters>) <body>))

Procedure definition is shorthand of define with a lambda expression

1. Evaluate the <expression>

2. Bind <name> to its value in the current frame

(define x (+ 1 2))

45

Applying User-Defined Procedures

To apply a user-defined procedure, create a new frame where…

• Formal parameters (variables) are bound to argument values
• Whose parent frame is the env attribute of the procedure

Evaluate the body of the procedure in the environment that starts with this new frame

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

(demo (list 1 2))

1

Pair

2

Pair

nil[parent=g] s

[parent=g] s

[parent=g] s

g: Global frame

demo LambdaProcedure instance [parent=g]

46

Why Do We Teach Interpreters?

Why Interpreters?

• From the syllabus: “In CS 61A, we are interested in teaching you about programming, not
 about how to use one particular programming language.”

• Programming: creating a set of instructions for a computer to execute

• Learning about interpreters provides better insight into how Python operates
• Most elements of the Scheme interpreter (special forms, creating call/environment
 frames, etc.) are also present in Python

• Explains why programming languages are so brittle
• One small syntax error makes a huge difference!

• Small introduction into programming systems
• If you think interpreters are cool, take CS 164 (Programming Languages & Compilers)

48

