Scheme II Dynamic scoping, tail calls, and scheme practice

Announcements

Dynamic Scope

## Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope (or static scope) [You can see what names are in scope by inspecting the definition]

Lexical scope: The parent of a frame is the environment in which a procedure was defined

**Dynamic scope**: The parent of a frame is the environment in which a procedure was *called* 

Special form to create dynamically scoped procedures (**mu** special form only exists in Project 4 Scheme)

(define f <del>(lambda (</del>x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope: The parent for f's frame is the global frame (g 3 7) evaluates to what? Error: unknown identifier: y

**Dynamic scope**: The parent for f's frame is g's frame



**Tail Recursion** 

## **Functional Programming**

All functions are pure functions

No re-assignment and no mutable data types

Name-value bindings are permanent

Advantages of functional programming:

- The value of an expression is independent of the order in which sub-expressions are evaluated
- Sub-expressions can safely be evaluated in parallel or only on demand (lazily)
- with the value of that subexpression

But... no for/while statements! Can we make basic iteration efficient? Yes!

• Referential transparency: The value of an expression does not change when we substitute one of its subexpression



## **Recursion and Iteration in Python**

In Python, recursive calls always create new active frames

factorial(n, k) computes: n! \* k

```
def factorial(n, k):

if n == 0:

return k

else:

return factorial(n-1, k*n)

def factorial(n, k):

while n > 0:

n, k = n-1, k*n
```

return k





----7

From the Revised<sup>7</sup> Report on the Algorithmic Language Scheme:

"Implementations of Scheme are required to be properly tail-recursive. This allows the execution of an iterative computation in constant space, even if the iterative computation is described by a syntactically recursive procedure."

(define (factorial n k) (if (zero? n) k (factorial (- n 1) (\* k n))))

Should use resources like

```
def factorial(n, k):
while n > 0:
n, k = n-1, k*n
return k
```

\_\_\_\_\_

How? Eliminate the middleman!

| Time   | Space    |
|--------|----------|
| Linear | Constant |

## Tail Recursion and Functional Programming

```
(define (factorial n)
 (if (zero? n) 1
  (* n (factorial (- n 1))))
```

```
(factorial 6)
(* 6 (factorial 5))
(* 6 (* 5 (factorial 4)))
(* 6 (* 5 (* 4 (factorial 3))))
(* 6 (* 5 (* 4 (* 3 (factorial 2))))
(* 6 (* 5 (* 4 (* 3 (* 2 (factorial 1)))))
(* 6 (* 5 (* 4 (* 3 (* 2 1))))
(* 6 (* 5 (* 4 (* 3 2))))
(* 6 (* 5 (* 4 6)))
(* 6 (* 5 24))
(* 6 120)
720
```

```
(define (factorial n k)
 (if (zero? n) k
  (factorial (- n 1)
          (* k n))))
```

```
(factorial 6 1)
(factorial 5 6)
(factorial 4 30)
(factorial 3 120)
(factorial 2 360)
(factorial 1720)
720
```

Tail Calls

A procedure call that has not yet returned is active. Some procedure calls are tail calls. A Scheme interpreter should support an unbounded number of active tail calls using only a constant amount of space.

A tail call is a call expression in a tail context:

- The last body sub-expression in a **lambda** expression (or procedure definition)
- Sub-expressions 2 & 3 in a tail context if expression
- All non-predicate sub-expressions in a tail context cond
- The last sub-expression in a tail context and, or, begin, or let



```
(define factorial (lambda (n k)
 (if (= n 0) k)
  (factorial (- n 1)
          (* k n)))))
```



## Example: Length of a List



A call expression is not a tail call if more computation is still required in the calling procedure

Linear recursive procedures can often be re-written to use tail calls

```
(define (length-tail s)
(define (length-iter s n)
(if (null? s) n
(length-iter (cdr s) (+ 1 n)) ) )
```

Recursive call is a tail call



## Eval with Tail Call Optimization

The return value of the tail call is the return value of the current procedure call

Therefore, tail calls shouldn't increase the environment size

\_\_\_\_\_

(Demo)



Tail Recursion Examples

Audience Participation

## Is Length Tail Recursive?

Does this procedure run in constant space?

;; Compute the length of s.

(define (length s) (+ 1 (if (null? s) -1 (length (cdr s))) ) )

(length `(1 2 3))





## Is Contains Tail Recursive?

Does this procedure run in constant space?



(contains `(1 2 3) 3)



## Is Has-repeat Tail Recursive?

## Does this procedure run in constant space?

;; Return whether s has any repeated elements.

```
(define (has-repeat s)

(if (null? s)

false

(if (contains? (cdr s) (car s))

true

((has-repeat (cdr s))) ))
```

\_\_\_\_\_



## Is fib Tail Recursive?

Which of the following procedures run in constant space?





## (Demo) Tail recursive fib



# Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

;; Compute the length of s.



;; Return the nth Fibonacci number.





;; Return whether s has any repeated elements.





# Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

;; Compute the length of s.



;; Return the nth Fibonacci number.





;; Return whether s has any repeated elements.







## Break

(Demo) More turtle things

Map and Reduce

## Example: Reduce

| define (reduce procedure s start) |  |
|-----------------------------------|--|
| (if (null? s) start               |  |
| (reduce procedure                 |  |
| (cdr s)                           |  |
| (procedure start (car s)))))      |  |

Recursive call is a tail call

Space depends on what procedure requires

(reduce \* '(3 4 5) 2)

(reduce (lambda (x y) (cons y x)) '(3 4 5) '(2))

120

### (5432)



## Example: Map with Only a Constant Number of Frames



(map (lambda (x) (- 5 x)) (list 1 2))



```
(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
    (map-reverse (cdr s)
           (cons (procedure (car s))
       _____)).____).____
 (reverse (map-reverse s nil)))
```

```
(define (reverse s)
 (define (reverse-iter s r)
 (if (null? s)
    (reverse-iter (cdr s)
              (cons (car s) r))))
 (reverse-iter s nil))
```



Implementing Tail Call Optimization

## Who'da Thunk?

Thunk: An expression wrapped in an argument-less function.

```
>>> thunk1 = lambda: 2 * (3 + 4)
>>> thunk2 = lambda: add(2, 4)
>>> thunk1()
14
>>> thunk2()
6
```

Known as **Unevaluated** objects in the Scheme project.

## Trampolining

**Trampoline**: A loop that iteratively invokes thunk-returning functions.

```
def trampoline(f, *args):
  v = f(*args)
  while callable(v):
     v = v()
  return v
```

The function needs to be **thunk-returning**:

```
def fact_k_thunked(n, k):
  if n == 0:
     return k
  return lambda: fact_k_thunked(n - 1, n * k)
```

```
trampoline(fact_k_thunked, 3, 1)
```

This way of executing the factorial function uses a constant number of frames.

Trampolining can simulate tail call optimization in unoptimized languages (e.g. Python).

(Demo)

**Scheme Practice** 

**Definition**: a *non-empty subset* of a list **s** is a list containing some of the elements of **s**.

(A *non-empty subset* could contain all the elements of s, but not none of them.)

```
;;; Non-empty subsets of integer list s that have an even sum
; ; ;
;;; scm> (even-subsets '(3 4 5 7))
;;;((57)(457)(4)(37)(35)(347)(345))
(define (even-subsets s) ...)
```

A recursive approach: The even subsets of s include...

- all the even subsets of the rest of s
- the first element of s followed by an (even/odd) subset of the rest ullet
- just the first element of s if it is even

### (Demo)



Discussion Question: Even Subsets Using Filter

## Discussion Question: Complete this implementation of even-subsets

**Definition**: a *non-empty subset* of a list **s** is a list containing some of the elements of **s**.

(A *non-empty subset* could contain all the elements of s, but not none of them.)

```
;;; non-empty subsets of s
(define (nonempty-subsets s)
(if (null? s) nil
```

(let ((rest (nonempty-subsets (cdr s)) )) (append rest (map (lambda (t) (cons (car s) t)) rest) (list (list (car s)))))))

;;; non-empty subsets of integer list s that have an even sum (define (even-subsets s)

(filter (lambda (s) (even? (apply + s))) (nonempty-subsets s)))



Extra Tail Recursion Examples

## Is camel Tail Recursive?

## Does this procedure run in constant space?

;; Return whether n is a camel sequence. Ex: 121, 4142, 6590





## Is camel Tail Recursive Now?

## Does this procedure run in constant space?





## Is camel Tail Recursive Now??

### Does this procedure run in constant space?

;; Return whether n is a camel sequence. Ex: 121, 4142, 6590



