
Scheme

Announcements

(Scheme)

Scheme is a Dialect of Lisp

What are people saying about Lisp?

•"If you don't know Lisp, you don't know what it means for a programming language to be powerful and elegant."

- Richard Stallman, created Emacs & the first free variant of UNIX

•"The greatest single programming language ever designed."

 -Alan Kay, co-inventor of Smalltalk and OOP

4

Why Scheme?

Scheme has heavily influenced the development of other languages like Python and still sees some use today.

The goal of this class is not to teach Python, but rather to teach a variety of programming techniques and core concepts

Contrasting Scheme and Python allows us to what transfers between languages.

● In both Python and Scheme, we can write functions and store data in lists
● Functional programming is present in pretty much all languages
● Primitive values and evaluation

Contrasting Scheme and Python allows us to see what paradigms certain languages prioritize:

● Imperative languages - languages that compute by changing the program state
● Functional languages - computation as a series of function applications
● Declarative languages - describes what not how a computation should perform

We will use Scheme to learn how interpreters are implemented! Scheme is an easier language to parse than Python given
its minimal syntax.

Important Scheme Resources

In CS 61A we teach our own dialect of Scheme—this means that there may be slight differences between the behavior of our
version of Scheme and other versions that you find online, so we recommend that you primarily stick to our resources for
reference

Important Scheme resources for CS 61A:

● code.cs61a.org - Has a live Scheme interpreter, and a Scheme text editor (feel free to play around with these during the
lecture!)

● cs61a.org/articles/scheme-spec/ - Full specification for the CS 61A dialect of Scheme (accessible on the Resources page
of the course site)

● cs61a.org/articles/scheme-builtins/ - Built-in procedure reference (also accessible on the resources page)

https://code.cs61a.org
https://cs61a.org/articles/scheme-spec/
https://cs61a.org/articles/scheme-builtins/

Scheme Expressions

Scheme programs consist of expressions, which can be:

• Primitive expressions: 2 3.3 true + quotient

• Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

(Demo)

7

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s built-in integer
division procedure (i.e., function)

Combinations can span multiple lines
(spacing doesn’t matter)

Built-in arithmetic procedures

+ (+ 1 2 3)

- (- 12) (- 3 2 1)

* (*) (* 2) (* 2 3)

/ (/ 2) (/ 4 2) (/ 16 2 2)

quotient (quotient 7 3)

abs (abs -12)

expt (expt 2 10)

remainder (remainder 7 3) (remainder -7 3)

cs61a.org/articles/scheme-builtins/#arithmetic-operations

https://cs61a.org/articles/scheme-builtins/#arithmetic-operations

Built-in boolean procedures (for numbers)

= (= 4 4) (= 4 (+ 2 2))

< (< 4 5)

> (> 5 4)

<= (<= 4 5) (<= 4 4)

>= (>= 5 4) (>= 4 4)

even? (even? 2)

odd? (odd? 3)

zero? (zero? 0) (zero? 0.0)

These procedures only work on numbers

cs61a.org/articles/scheme-builtins/#on-numbers

https://cs61a.org/articles/scheme-builtins/#on-numbers

Built-in boolean procedures

eq (eq? #t #t)
(eq? 0 (- 1 1))

(eq? #t #f)
(eq? 0 0.0)

not (not #f) (not 0)
(not #t)

list? (list? '(1 2)) (list? 0)

null? (null? nil) (null? 'a)

Fun/important fact: the only falsey data value in Scheme is #f—all other
data values are truthy

cs61a.org/articles/scheme-builtins/#general

https://cs61a.org/articles/scheme-builtins/#general

Special Forms

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

• New procedures: (define (<symbol> <formal parameters>) <body>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

The symbol “pi” is bound to 3.14 in the global frame

A procedure is created and bound to the symbol “abs”

1
2

Evaluation:
(1) Evaluate the predicate

expression
(2) Evaluate either the

consequent or alternative

(Demo)

Scheme Interpreters

(Demo)

Lambda Expressions

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

λ
 (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

 (define (plus4 x) (+ x 4))

 (define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

 ((lambda (x y z) (+ x y (square z))) 1 2 3)

Evaluates to the
x+y+z2 procedure

15

12

More Special Forms

(print

)

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

17

if x > 10:
 print('big')
elif x > 5:
 print('medium')
else:
 print('small')

(cond ((> x 10) (print 'big))
 ((> x 5) (print 'medium))
 (else (print 'small)))

(cond ((> x 10) 'big)
 ((> x 5) 'medium)
 (else 'small))

The begin special form combines multiple expressions into one expression

if x > 10:
 print('big')
 print('guy')
else:
 print('small')
 print('fry')

(cond ((> x 10) (begin (print 'big) (print 'guy)))
 (else (begin (print 'small) (print 'fry))))

(if (> x 10) (begin
 (print 'big)
 (print 'guy))
 (begin
 (print 'small)
 (print 'fry)))

Let Expressions

The let special form binds symbols to values temporarily; just for one expression

18

a = 3
b = 2 + 2
c = math.sqrt(a * a + b * b)

(define c (let ((a 3)
 (b (+ 2 2)))
 (sqrt (+ (* a a) (* b b)))))

a and b are still bound down here a and b are not bound down here

Turtle Graphics

Drawing Stars

(forward 100) or (fd 100) draws a line

(right 90) or (rt 90) turns 90 degrees

20

(Demo)

Sierpinski's Triangle

(Demo)

Break

Lists

Scheme Lists

In the late 1950s, computer scientists used confusing names

• cons: Two-argument procedure that creates a linked list

• car: Procedure that returns the first element of a list

• cdr: Procedure that returns the rest of a list

• nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

 >
 (1 2)
 > (define x (cons 1 (cons 2 nil))
 > x
 (1 2)
 > (car x)
 1
 > (cdr x)
 (2)
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))
 (1 2 3 4)

(Demo)

2

(cons 1)(cons 2 nil) 1

2

1 2 3 4

2

nil

Built-in list procedures

list? (list? '(1 2)) (list? 0)

null? (null? nil) (null? 'a)

cs61a.org/articles/scheme-builtins/#general

length (length '(1 3 5)) 3

list (list 1 2 3) (1 2 3)

list (append '(1) '(2) '(3 4)) (1 2 3 4)

map (map odd? '(2 2 2)) (#f #f #f)

filter (filter even? '(1 2 3)) (2)

reduce (reduce quotient '(13 3 2)) 2

https://cs61a.org/articles/scheme-builtins/#general

Symbolic Programming

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.

 > '(a b c)
 (a b c)
 > (car '(a b c))
 a
 > (cdr '(a b c))
 (b c)

Short for (quote a), (quote b):
Special form to indicate that the expression itself is the value.

2
7

(Demo)

List Processing

Built-in List Processing Procedures

(append s t): list the elements of s and t; append can be called on more than 2 lists

(map f s): call a procedure f on each element of a list s and list the results

(filter f s): call a procedure f on each element of a list s and list the elements for which a true value is the result

(apply f s): call a procedure f with the elements of a list as its arguments

2
9

(Demo)

Example: Even Subsets

Even Subsets

Definition: a non-empty subset of a list s is a list containing some of the elements of s.

(A non-empty subset could contain all the elements of s, but not none of them.)

31

;;; Non-empty subsets of integer list s that have an even sum
;;;
;;; scm> (even-subsets '(3 4 5 7))
;;; ((5 7) (4 5 7) (4) (3 7) (3 5) (3 4 7) (3 4 5))
(define (even-subsets s) ...)

A recursive approach: The even subsets of s include...

• all the even subsets of the rest of s

• the first element of s followed by an (even/odd) subset of the rest

• just the first element of s if it is even

(Demo)

Discussion Question: Even Subsets Using Filter

Discussion Question: Complete this implementation of even-subsets

;;; non-empty subsets of s
(define (nonempty-subsets s)
 (if (null? s) nil

 (let ((rest __________________________))
 (append rest
 (map (lambda (t) (cons (car s) t)) rest)
 (list (list (car s)))))))

;;; non-empty subsets of integer list s that have an even sum
(define (even-subsets s)

 (filter ________________________________ (nonempty-subsets s)))

33

(lambda (s) (even? (apply + s)))

(nonempty-subsets (cdr s))

Definition: a non-empty subset of a list s is a list containing some of the elements of s.

(A non-empty subset could contain all the elements of s, but not none of them.)

