
Linked Lists



Accouncements

• Last day to turn in midterm regrades is tomorrow 

• Project Party 3:00 - 5:30 pm in Woz, Soda 430-438 

• Lab 08 and HW 04 due today 

• Ants has been released! 
• Checkpoint 1 due 7/21 
• Checkpoint 2 due 7/25 
• Project due 7/28 

• Last python lecture!!
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Why Linked Lists?
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L.insert(“AA”, 1)

Python lists are implemented as a "dynamic array", which isn't optimal for all use 
cases. 
😭 Inserting an element is slow, especially near front of list:



List Operations



Insert
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0 1 2 3 4 5 6 7 8

L.insert(0, 0)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Linear



Append
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1 2 3 4 5 6 7 8

L.append(0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Linear 
Find new memory and copy over old elements

0

0



Append
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1 2 3 4 5 6 7 8

L.append(0)

Constant, but sometimes, linear 

Allocate twice as much memory as requested

Inserting too many elements can require re-creating the entire list in 
memory, if it exceeds the pre-allocated memory.



Delete
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1 2 3 4 5 6 7 8

del L[0]

Linear

2 3 4 5 6 7 8



Delete
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1 2 3 4 5 6 7 8

del L[7]

Constant

1 2 3 4 5 6 7



Access
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l[2]

Python lists  



Linked Lists



Lists vs. Linked Lists
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1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

A list is like a bus

A linked list is like a train



Linked Lists

A linked list is a chain of objects where each object holds a value and 
a reference to the next link. The list ends when the final reference is 
empty.
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Linked List Class



Linked Lists Class
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class Link: 
    empty = () 

    def __init__(self, first, rest=empty): 
        self.first = first 
        self.rest = rest

1 2 3

L = Link(1) 
L2 = Link(2) 
L3 = Link(3)

L.rest = L2 
L1.rest = L3 

1 2 3
L L1 L2
1 2 3

L = Link(1, Link(2), Link(3)) 



Mutating Linked Lists

Attribute assignments can change first and rest attributes of a Link 
s = Link("A", Link("B", Link(“C")))
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“A” “B” “C”

s.first = "Hi" 
s.rest.first = "Hola" 
s.rest.rest.first = “Hello"

“Hi” “Hola” “Hello”



Beware Infinite Lists

The rest of a linked list can contain the linked list as a sub-list. 
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Demo



Iterative Print Linked List
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Linked List Operations



Insert

Linked lists require more space but provide faster insertion. 
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Linked lists require more space but provide faster insertion

Inserting “AA” after the first node, s = Link(“AA”) 
temp = L.rest 
L.rest = s 
s.rest = temp

Constant



insertAfter method

class Link: 
    empty = () 

    def __init__(self, first, rest=empty): 
        self.first = first 
        self.rest = rest 

#insert a node, l after a node 
def insertAfter(self, l): 
        temp = self.rest 

     self.rest = l 
     l.rest = temp 
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Delete

No matter which node you want to delete, it takes one step: 
Point the rest of the node before the one to delete to the one after 
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Deleting “AA” 
L.rest = L.rest.rest

L

Constant



Access

I need to iterate through all the previous nodes using .rest  
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Accessing “D” 
node_b = L.rest 
node_c = node_b.rest 
node_d = node_c.rest 

Linear



Comparing Operations

Lists 

     insert:   linear 
     append:   constant, sometimes linear 
     delete:   linear 
     find:     linear 
     access:   constant 

Linked Lists 

     insert:   constant 
    delete:   constant 
     find:     linear 
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Linked List Exercises

Is a linked list s ordered from least to greatest?
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Is a linked list s ordered from least to greatest by absolute value (or a key function)?

Create a sorted Link containing all the elements of both sorted Links s & t.

Do the same thing, but never call Link.

1 3 4

1 -3 4 -4 -1 3

1 5 1 4 1 4 51

1 5 1 4x x

1 4 3



Circular, Doubly Linked Lists
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1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8



Doubly Linked List

class Dlink: 
    def __init__(self, data): 
        self.data = data 
        self.next = self 
        self.prev = self 

dl = Dlink(9) 
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