
Linked Lists

Accouncements

• Last day to turn in midterm regrades is tomorrow

• Project Party 3:00 - 5:30 pm in Woz, Soda 430-438

• Lab 08 and HW 04 due today

• Ants has been released!
• Checkpoint 1 due 7/21
• Checkpoint 2 due 7/25
• Project due 7/28

• Last python lecture!!

2

Why Linked Lists?

3

L.insert(“AA”, 1)

Python lists are implemented as a "dynamic array", which isn't optimal for all use
cases.
😭 Inserting an element is slow, especially near front of list:

List Operations

Insert

5

0 1 2 3 4 5 6 7 8

L.insert(0, 0)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Linear

Append

6

1 2 3 4 5 6 7 8

L.append(0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Linear
Find new memory and copy over old elements

0

0

Append

7

1 2 3 4 5 6 7 8

L.append(0)

Constant, but sometimes, linear

Allocate twice as much memory as requested

Inserting too many elements can require re-creating the entire list in
memory, if it exceeds the pre-allocated memory.

Delete

8

1 2 3 4 5 6 7 8

del L[0]

Linear

2 3 4 5 6 7 8

Delete

9

1 2 3 4 5 6 7 8

del L[7]

Constant

1 2 3 4 5 6 7

Access

10

l[2]

Python lists

Linked Lists

Lists vs. Linked Lists

12

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

A list is like a bus

A linked list is like a train

Linked Lists

A linked list is a chain of objects where each object holds a value and
a reference to the next link. The list ends when the final reference is
empty.

13

Linked List Class

Linked Lists Class

15

class Link:
 empty = ()

 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

1 2 3

L = Link(1)
L2 = Link(2)
L3 = Link(3)

L.rest = L2
L1.rest = L3

1 2 3
L L1 L2
1 2 3

L = Link(1, Link(2), Link(3))

Mutating Linked Lists

Attribute assignments can change first and rest attributes of a Link
s = Link("A", Link("B", Link(“C")))

16

“A” “B” “C”

s.first = "Hi"
s.rest.first = "Hola"
s.rest.rest.first = “Hello"

“Hi” “Hola” “Hello”

Beware Infinite Lists

The rest of a linked list can contain the linked list as a sub-list.

17

Demo

Iterative Print Linked List

18

Linked List Operations

Insert

Linked lists require more space but provide faster insertion.

20

Linked lists require more space but provide faster insertion

Inserting “AA” after the first node, s = Link(“AA”)
temp = L.rest
L.rest = s
s.rest = temp

Constant

insertAfter method

class Link:
 empty = ()

 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

#insert a node, l after a node
def insertAfter(self, l):
 temp = self.rest

 self.rest = l
 l.rest = temp

21

Delete

No matter which node you want to delete, it takes one step:
Point the rest of the node before the one to delete to the one after

22

Deleting “AA”
L.rest = L.rest.rest

L

Constant

Access

I need to iterate through all the previous nodes using .rest

23

Accessing “D”
node_b = L.rest
node_c = node_b.rest
node_d = node_c.rest

Linear

Comparing Operations

Lists

 insert: linear
 append: constant, sometimes linear
 delete: linear
 find: linear
 access: constant

Linked Lists

 insert: constant
 delete: constant
 find: linear

24

Linked List Exercises

Is a linked list s ordered from least to greatest?

25

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

Create a sorted Link containing all the elements of both sorted Links s & t.

Do the same thing, but never call Link.

1 3 4

1 -3 4 -4 -1 3

1 5 1 4 1 4 51

1 5 1 4x x

1 4 3

Circular, Doubly Linked Lists

26

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Doubly Linked List

class Dlink:
 def __init__(self, data):
 self.data = data
 self.next = self
 self.prev = self

dl = Dlink(9)

27

