
Lecture 15: Trees
July 19th, 2023

Jordan Schwartz

Announcements
● Midterm grades released!

○ Regrades due Friday 7/21
● Lab08 due tomorrow Thursday 7/20
● Hw04 due tomorrow Thursday 7/20
● Ants released today.

○ Checkpoint 1 due Friday 7/21
○ Checkpoint 2 due Tuesday 7/25
○ Whole project due Friday 7/28, submit Thursday 7/27

for bonus point
○ OH today 1-5:30 PM Warren Hall

● Hw03 recovery released!
● Grade estimator sheet

https://go.cs61a.org/grade-predictor

Trees

Tree class definition
class Tree:

def __init__(self, label, branches=[]):
self.label = label
self.branches = []

def is_leaf(self):
return self.branches == []

some more stuff also (__str__, __repr__, etc.)

self.label can be whatever you want—common data types you'll see in this class
are integers and strings, but really it can be anything!

self.branches is always a list of Tree objects—this means that trees are
recursive by definition :0

Visualizing Trees

Demo

https://code.cs61a.org/

Tree terminology
Let's say we have a variable t that is pointing at an instance of the Tree
class

● The variable t is pointing at the root of our tree
● The class is called Tree, but we often refer to the entire, larger data

structure as a tree, and refer to the individual Tree objects contained
within it as nodes

● t.label allows us to access the label of t—the basic premise of trees
as a data structure is that each individual node remembers a small
piece of inforation

● Any of the trees stored in t.branches are called the branches or
children of t

● t can also be called the parent of any of its immediate branches
● Any node or tree without any branches is called a leaf—we can verify

whether a Tree instance is a leaf by using the is_leaf method

OOP vs Abstract Data Type
Class + Constructor method:

class Tree()

def __init__(self, label, branches=[])

t = Tree(3, [Tree(4)])

Class attribute

Create Instance attributes:

self.label = label

self.branches = branches

Access instance attr:

t.label

t.branches

Method

t.is_leaf()

Constructor

def tree(value, branches=[])

t = tree(3, [tree(4)])

Create selectors:

def label(tree)

def branches(tree)

Use selectors

label(t)

branches(t)

Convenience function

is_leaf(t)

Tree terminology

t 1

2 3

4 5 6

The Tree object whose label
is 1 is the root of the tree
stored at t

The Tree objects whose
labels are 2 and 3 are the
branches of that tree

The Tree objects whose
labels are 2, 4, 5, and 6 are
all leaves

Sanity check

t 1

2 3

4 5 6

What is an expression that would evaluate to the
Tree whose label is 2?

t.branches[0]

What about the tree whose label is 6?

t.branches[1].branches[2]

What does t.is_leaf() return?

False

What about
t.branches[1].branches[2].is_leaf() ?

True

What is t.branches?

IT IS A LIST OF TREE OBJECTS, not Tree objects themselves

>>> t = Tree (1, [Tree(2, [Tree(4), Tree(5)]), Tree(3)])

>>> t.branches

[Tree(2, [Tree(4), Tree(5)]), Tree(3)]

Tree Processing

Tree processing
Trees are a natural recursive data structure!

Each Tree has:

● A label
● 0 or more branches, which are themselves Trees

This means that pretty much all of our algorithms to process trees
are going to be recursive

(Especially, as the name suggests, tree-recursive)

Trees are simple to describe, but tricky to work with, so we're going
to spend most of the rest of this lecture talking about different kinds
of tree problems

Count leaves
def count_leaves(t):
 """Returns the number of leaf nodes in T.
 >>> t = Tree(1, [Tree(2), Tree(3)])
 >>> count_leaves(t)
 2
 """
 if _____:

 else:

 # you can use as many lines as you want

Count leaves - solution
def count_leaves(t):
 """Returns the number of leaf nodes in T.
 >>> t = Tree(1, [Tree(2), Tree(3)])
 >>> count_leaves(t)
 2
 """
 if t.is_leaf():
 return 1
 else:
 num_leaves = 0
 for b in t.branches:
 num_leaves += count_leaves(b)
 return num_leaves

Count leaves - solution (one-liner recursive case)
def count_leaves(t):
 """Returns the number of leaf nodes in T.
 >>> t = Tree(1, [Tree(2), Tree(3)])
 >>> count_leaves(t)
 2
 """
 if t.is_leaf():
 return 1
 else:
 return sum([count_leaves(b) for b
 in t.branches])

List leaves
def list_leaves(t):
 """Returns a list of the leaf labels of T.
 >>> t = Tree(1, [Tree(2), Tree(3)])
 >>> list_of_leaves(t)
 [2, 3]
 """
 if _____:

 else:

List leaves - solution
def list_leaves(t):
 """Returns a list of the leaf labels of T.
 >>> t = Tree(1, [Tree(2), Tree(3)])
 >>> list_of_leaves(t)
 [2, 3]
 """
 if t.is_leaf():
 return [t.label]
 else:
 list_of_lists = [list_leaves(b) for b
 in t.branches]
 return sum(list_of_lists, start=[])

Count paths
def count_paths(t, total):
 """Return the number of paths from the root to
 any node in T for which the labels along the
 path sum to TOTAL.
 >>> t = Tree(3, [Tree(-1), Tree(1, [Tree(2,
 [Tree(1)]), Tree(3)]), Tree(1, [Tree(-1)])])
 >>> count_paths(t, 3)
 2
 >>> count_paths(t, 4)
 2
 >>> count_paths(t, 5)
 0
 """

Count paths - solution
def count_paths(t, total):
 """Return the number of paths from the root to
 any node in T for which the labels along the
 path sum to TOTAL.
 """
 count = 0
 if total == t.label:
 count += 1
 for b in t.branches:
 count += count_paths(b, total - t.label)
 return count

Visualizing count paths

3

-1 1 1

2 3 -1

-1

c_p(t, 3)

c_p(t, 0) c_p(t, 0) c_p(t, 0)

c_p(t, -1) c_p(t, -1) c_p(t, -1)

c_p(t, -3)

0

0 0 1

0 0 1

2

Count paths - solution (with sum)
def count_paths(t, total):
 """Return the number of paths from the root to
 any node in T for which the labels along the
 path sum to TOTAL.
 """
 found = int(t.label == total)
 return sum([count_paths(b, total - t.label)
 for b in t.branches]) + found

Aside: Why use list comprehensions? Or sum?
When programming, we have a couple main goals:

● Write code that solves the task
● Write code that is comprehensible to folks other than you
● Write code that runs as efficiently as possible

The first bullet point is obviously the most important, and we generally don't
emphasize the other two much in this class. In general, which of the second
or third bullet points matters most depends on the application and the
context

Built-in Python constructs such as list comprehensions and functions like
sum have some optimization strategies baked into them from the language
itself (these are covered more in 61B and 61C)—this means we get an
efficiency boost each time we're able to use them over a standard for- or
while-loop

Break

String Representation

Print tree
def print_tree(t):
 """Prints the nodes of T with depth-based
 indent.
 >>> t = Tree(1, [Tree(2, [Tree(4), Tree(5)]),
 Tree(3)])
 >>> print_tree(t) # indents are two spaces
 1
 2
 4
 5
 3
 """
 # use as many lines as you want!

Print tree
def print_tree(t):
 def helper(t, indent):
 print(indent * " " + str(t.label))
 for b in t.branches:
 helper(b, indent + 2)
 helper(t, 0)

Interesting things:

● We needed a helper function to carry information across
calls—this is a common predicament

● There's no (explicit) base case! If t is a leaf, t.branches is
empty, and the for-loop never executes. Our recursive calls are
only inside the for-loop, so we never recurse on a leaf

String representation for Trees
class Tree:
 # stuff we've already seen

 def __repr__(self):
 if self.branches:
 branch_str = ', ' + repr(self.branches)
 else:
 branch_str = ''
 return 'Tree({0}{1})'.format(self.label, branch_str)

 def __str__(self):
 return '\n'.join(self.indented())

 def indented(self):
 lines = []
 for b in self.branches:
 for line in b.indented():
 lines.append(' ' + line)
 return [str(self.label)] + lines

Creating Trees

Double
def double(t):
 """Returns a Tree identical to T, but with all
 labels doubled
 >>> t = Tree(1, [Tree(2), Tree(3)])
 >>> double(t)
 Tree(2, [Tree(4), Tree(6)])
 """
 if _____:

 else:

Double - solution
def double(t):
 """Returns a Tree identical to T, but with all
 labels doubled
 >>> t = Tree(1, [Tree(2), Tree(3)])
 >>> double(t)
 Tree(2, [Tree(4), Tree(6)])
 """
 if t.is_leaf():
 return Tree(t.label * 2)
 else:
 return Tree(t.label * 2,
 [double(b) for b in t.branches])

Double - solution (shorter!)
def double(t):
 """Returns a Tree identical to T, but with all
 labels doubled
 >>> t = Tree(1, [Tree(2), Tree(3)])
 >>> double(t)
 Tree(2, [Tree(4), Tree(6)])
 """
 return Tree(t.label * 2,
 [double(b) for b in t.branches])

Mutating Trees

Double, mutatively
def double_mut(t):
 """Mutates T such that every label is doubled.
 >>> t = Tree(1, [Tree(2), Tree(3)])
 >>> double_mut(t)
 >>> t
 Tree(2, [Tree(4), Tree(6)])
 """
 # your code here!

Double, mutatively - solution
def double_mut(t):
 """Mutates T such that every label is doubled.
 >>> t = Tree(1, [Tree(2), Tree(3)])
 >>> double(t)
 >>> t
 Tree(2, [Tree(4), Tree(6)])
 """
 t.label *= 2
 for b in t.branches:
 double_mut(b)

Prune
def prune_n(t, n):
 """Prunes T by removing all subtrees whose
 label is N.
 >>> t = Tree(3, [Tree(1, [Tree(0), Tree(1)]),
 Tree(2, [Tree(1), Tree(1, [Tree(0),
 Tree(1)])])])
 >>> prune_n(t, 1)
 >>> t
 Tree(3, [Tree(2)])
 """
 # your code here!

Prune - solution
def prune_n(t, n):
 """Prunes T by removing all subtrees whose
 label is N.
 """
 t.branches = [b for b in t.branches if
 b.label != n]
 for b in t.branches:
 prune_n(b, n)

Summary so far
There are a couple of major types of Tree problems:

● Processing the whole tree and returning some kind of information about
it

● Constructing a new tree—either based on an old one, or based on some
other specification

● Mutating the labels of an existing tree
● Mutating the branches of an existing tree
● Sometimes we need helper functions to carry information across

recursive calls

Tree algorithms use a lot of the same constructs over and over—t.label,
t.is_leaf(), for b in t.branches, etc. It's harder than you might
think to know when it's the right time to use each of those

We just saw problems where we could use is_leaf(), but didn't need to!

Syntax Trees

Tree terminology
Trees are such a useful data structure because they can model things that
are naturally recursive, and there's a ton of that both within and outside of
CS!

Syntax (the language kind)
Syntax is the branch of linguistics that studies sentence structure and word
order—how these things are (un)constrained in various languages, and how
they work together with words to create meaning

Consider this sentence:

The bar was dirty

The bar in Philadelphia was dirty

The bar in Philadelphia that Frank owned was dirty

In English, we can attach a (technically) arbitrary number of intervening
clauses between a noun phrase and verb phrase, and speakers still agree
what the verb phrase should be describing

It's really hard to describe this (and many other) phenomena using linear
structure/direct word order—enter trees!

Syntax trees
Syntax trees aim to model the structure of languages in a way that's easy to
visualize (and, consequently, easy for computers to understand)

One of the first things we have to do to construct a syntax tree is classify words by
their part of speech

The bar in Philadelphia was dirty

DT NN IN NNP VBD JJ

This is a kind of abstraction! There's a ton of words, but much fewer parts of speech,
and many words behave in syntactically identical ways anyways (e.g. "The bar in
Philadelphia was run-down")

Next, we want to use a tree to group these into constituents, which are basically
phrasal units

[The bar in Philadelphia] [in Philadelphia was]

Constituent Not a constituent

NLTK
The Natural Language Toolkit (NLTK - https://www.nltk.org/) is a
pre-existing Python library with a ton of tools and databases for
computational linguistics and natural language processing, including syntax
trees!

NLTK comes with a built-in part-of-speech tagger that we can play around
with! It's not perfect because even that task is relatively challenging

NLTK can also generate syntax trees (parse trees) from a sentence, when
given a grammar—again, it's a very imperfect tool, but super neat!

Demo

https://www.nltk.org/

