Objects

Announcements

* Midterm grades released!

- July 21st deadline to submit regrades
- Lab 07 and HW 04 released

« Cats due tomorrow, submit today for one bonus point

« Get excited for Ants

« OH 1s various Llocations, Woz and Warren, so check the calendar
- HW 3 Recovery released and will be due next Monday

- HW 2 Recovery due tonight

Object-Oriented Programming

A method for organizing programs

-Data abstraction

Bundling together information and related behavior

A metaphor for computation using distributed state
Each object has its own local state

-Each object also knows how to manage 1ts own local state,
based on method calls

Method calls are messages passed between objects
-Several objects may all be instances of a common type

Different types may relate to each other

Specialized syntax & vocabulary to support this metaphor

Jordan’s
Account

o
Withdraw

$10

4 (
Deposit

8 $10

™
7

Tim's
Account

Apply for\
a Loan!
J
Bank

Classes

A class describes the general behavior of 1its instances

Idea: All bank accounts have a balance and >>> g = Account('Noor"')
an account holder:; the Account class should >>> a.holder
add those attributes to each newly created ‘Noor’
1nstance >>> a.balance

0

>>> a.,deposit(15
Idea: ALl bank accounts should have 15 P)
withdraw and deposit behaviors that all work ~>> a.withdraw(10)
in the same way 5

>>> a.balance

5
Better idea: All bank accounts share a ~>>> a.withdraw(10)

withdraw method and a deposit method 'Insufficient funds'

Class vs. Object

« A class combines and abstracts data and functions

- An object 1is an instantiation of a class

LT L Y R
aah o SR LT 3

propneyT

Class Statements

The Class Statement

class <name>:
<sulte>

A class statement creates a new class and binds that class to <name> 1n the first frame of
the current environment

Assignment & def statements 1n <suite> create attributes of the class

>>> class House:
color = ‘red’
windows = 2

>>> House.color
‘red’

>>> House.wlndows
2

>>> House

<class ‘ _ main__ .House'>

Idea: ALl bank accounts have a balance and an account holder:
the Account class should add those attributes to each of its instances

>>> @ = Account('Noor')

>>> a.holder R

‘Noor"' R R e e e e e e e e L E L P L PP L PP L PP EPPEE RS .

>>> g.balance
0

When a class 1s called:

An account i1nstance

1.A new instance of that class is created: | lEilicilac holder: “NoOI ' EAiitibiiis .

N

L 2
~ o 1 . -’
-- e s
[]

2.The __1nit_ method of the class 1s called with the new object as 1ts first
argument (named self), along with any additional arguments provided in the
call expression

class Account: e -’
def init (self, account_holder):
> self.balance = 0 .
»self.holder = account holder =~~~ TRt

Object ldentity

Every object that i1s an instance of a user—-defined class has a unique identity:

>>> a = Account('Tim"')

>>> b = Account(‘Jordant” N
~>> a.balance Every call to Account creates a new Account

0 instance. There 1s only one Account class.
>>> b.holder S 4
‘Jordan’

Identity operators "is" and '"is not" test i1f two expressions evaluate to the same object:

>>> g 1S a
True

>>> g 1S not b
True

Binding an object to a new name using assignment does not create a new object:

>>> C = a4
>>> C 1S a
True

Methods

Methods

Methods are functions defined in the suite of a class statement

class Account:
def init (self, account _holder):
self.balance = 0
self.holder account_holder

(self should always be bound to an instance of the Account class]

def deposit(sgif, amount) :

self.balance = self.balance + amount

return self.balance
def withdraw(self, amount):

if amount > self.balance:

return 'Insufficient funds'
self.balance = self.balance - amount
return self.balance

These def statements create function objects as always,
but their names are bound as attributes of the class

Invoking Methods

ALl invoked methods have access to the object via the self parameter, and so they can all
access and manipulate the object's state

class Account: (Defined with two parameters j

A

def deposit(self, amount):

............................

self.balance = self.balance + amount
return self.balance

Dot notation automatically supplies the first argument to a method

>>> tom account = Account('Tom"')

l\ Bound to self j]; Invoked with one argument j

100

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or 1ts class
<expression> . <nhame>

The <expression> can be any valid Python expression
The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name> in the object
that 1s the value of the <expression>

E 5 | §<{ Call expression j
g [Dot expression j 5

Attributes

Accessing Attributes

Using getattr, we can look up an attribute using a string

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a name in the same way

Looking up an attribute name 1n an object may return:
* One of 1ts 1instance attributes, or

* One of the attributes of 1ts class

Methods and Functions

Python distinguishes between:
- Functions, which we have been creating since the beginning of the course, and

- Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>

>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)<<:Function: all arguments within parentheses]
1011

>>> tom_account.deposit(1007) < B
2018 Method: One object before the dot and

other arguments within parentheses
N Y,

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

2. <name> 1S matched against the instance attributes of that object; 1if an
attribute with that name exists, 1ts value 1s returned

3. If not, <name> 1s looked up 1n the class, which yields a class attribute value

4. That value 1s returned unless 1t 1s a function, 1in which case a bound method 1is
returned 1nstead

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes

of the class, not the 1instance ////////////” ‘\\\\\\\\\\\\

>>> tom_account = Account('Tom")

class Account: >>> jim_account = Account('Jim') Balance:0
>>> tom ac t.interest holder: “Tom”
interest = 202 # A class attribute 0.02 interest: 0.04
0.01 >>> jim_account.interest
def init (self, account holder): 0.02
self.balance = 0 >>> tom_account.interest = 0.04 331 .0
self.holder = account _holder >>> tom_account.1interest . ancs,(N
004 holder: “Jim

Additional methods would be defined here >>> Account.interest = 0.01
>>> tom_account.interest
0.04
>>> jilm_account.interest
0.01

Break

Bouncing Balls

Ball Instance

class Ball:
def __init__ (self, start_x, start_y, start_v_x, start_v_y, color='blue' :
Ball location, velocity, and color
self.x start_x
self.y = start_y
self.v_x = start_v_x

self.v_y = start_v_y
self.color = color

1. Allocate memory for a Ball object >>> pl.x
2.Initialize the Ball object with values 10.0
3. Return the Ball object >>> pbl.update_position() # Xx+= vX
x* 10.0 >>> bl.X
y: 15.0 11.0
bl = 8311(1@.0, 15.@, 1.@, —5.@)] vx:* 1.0
vy: —5.0
color: ‘blue’

Ball Class

- I EI N B H B HE H B HE B HE H BE HE BHE B BN B BE BN B BN BB BN BB BB BN BB BN B BN B§E BN B§B B BN B§E B B§N B BN BB BN B BN BB BN B&B BN B§B B BN B B B g

* def _init___(self, start_x, start_y, start_v_x, start_v_y, color='blue' : Ty
Ball location, velocity, and color
self.x = start_x

self.y = start_y

self.v_x = start_v_x

self.v_y = start_v_y
self.color = color '

‘------.
Il - - E E E E E =E = m =

."def update_position(self, timestep=1): .
self.x = self.x + timestep * self.v_x
self.y = self.y — timestep * self.v_y
if(self.y >= CANVAS_HEIGHT/2 - BALL_RADIUS : # bounce ball off floor
self.v_y = —self.v_y
self.y = self.y - timestep * self.v_y

def update_velocity(self, timestep=1l):
self.v_y = self.v_y + timestep *x EARTH_GRAVITY_ACCELERATION

def animate_step(self, timestep=1):
self.update_position(timestep
self.update_velocity timestep

def draw_balliself): # assumes canvas (D) has been created
D.append(draw.Circle(self.x, self.y, BALL_RADIUS, fill=self.color)

i H H H H H HE E E 5 5 | 5 5 5§ HE 5 HE 5 H = = = H = = = =B = = = m
M EmE E E E EE E E BE B B B B B B BB B B B B B B§BE &8 §&BE &8 &§BE &8 &38B ms

Ball Class

bl = Ball(10.0, 15.0, 0.0, -5.0)

b2

b3 = Ball(-4.0, 1.0, 5.0, 10.0 ‘red’)

Ball(-5.0, 1.0, 5.0, -10.0,

‘green’)

[bouncingballs.ipynb]

x: 10.0
y: 15.0
vx: 0.0
vy: =5.0
color: ‘blue’
X: =5.0
y: 1.0
vX: 5.0
vy: -10.0
color: ‘green’
Xx: —-4.0
y: 1.0
vX: 5.0
vy: 10.0
color: ‘red’

Multi-class programs

We can model objects interacting together!

Usually, we need more than one class of
objects in our program to model 1its
complexity!

[crowd.ipynb]

