
Efficiency

Announcements

Measuring Efficiency

Efficiency

A measure of how much resource consumption a computational task takes.

An analysis of computer programs rather than a technique for writing them.

In computer science, we are concerned with time and space efficiency

The time efficiency of could determine how long a user has to wait for a webpage to load.

The space efficiency of your algorithm could determine how much memory running your application takes

Orders of Growth

Prepend

def prepend(lst, val):
"""Add VAL to the front of LST."""

 lst.insert(0, val)

List Size Operations

1 1

10 1

100 1

1000 1

Exponentiation

Exponentiation

Goal: one more multiplication lets us double the problem size

8

def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)

n Operations

1 1

10 10

100 100

1000 1000

Exponentiation

Goal: one more multiplication lets us double the problem size

9

def exp_fast(b, n):
 if n == 0:
 return 1
 elif n % 2 == 0:
 return square(exp_fast(b, n//2))
 else:
 return b * exp_fast(b, n-1)

(Demo)

n Operations

1 ~1

16 ~5

512 ~9

1024 ~10

def square(x):
 return x * x

Exponentiation

10

Goal: one more multiplication lets us double the problem size

def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)

def exp_fast(b, n):
 if n == 0:
 return 1
 elif n % 2 == 0:
 return square(exp_fast(b, n//2))
 else:
 return b * exp_fast(b, n-1)

def square(x):
 return x * x

Linear time:
• Doubling the input

doubles the time
• 1024x the input takes

1024x as much time

Logarithmic time:
• Doubling the input

increases the time
by one step

• 1024x the input
increases the time
by only 10 steps

Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time

11

def overlap(a, b):
 count = 0
 for item in a:
 for other in b:
 if item == other:
 count += 1
 return count

overlap([3, 5, 7, 6], [4, 5, 6, 5])

3 5 7 6

4

5

6

5

0 0 0 0

0 1 0 0

0 0 0 1

0 1 0 0

(Demo)

Exponential Time

12

fib(3)

fib(1)

1

fib(4)

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(5)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-2) + fib(n-1)

12

Tree-recursive functions can take exponential time

Common Orders of Growth

13

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Linear growth. E.g., slow exp

Logarithmic growth. E.g., exp_fast

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Quadratic growth. E.g., overlap

Incrementing n increases time by n times a constant

Incrementing n increases time by a constant

Time for input n+1 Time for input nTime for n+n

Order of Growth Notation

Big Theta and Big O Notation for Orders of Growth

15

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Linear growth. E.g., slow exp

Logarithmic growth. E.g., exp_fast

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Quadratic growth. E.g., overlap

Incrementing n increases time by n times a constant

Incrementing n increases time by a constant

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

1
6

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

(Demo)

def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-2) + fib(n-1)

Memoization Revisited

(Demo)

Memoization

Idea: Remember the results that have been computed before

def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

Keys are arguments that map to
return values

Same behavior as f,
if f is a pure function

1
8

(Demo)

Memoized Tree Recursion

1
9

Found in cache
fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Break

Revisiting Past Problems

Space

Space and Environments

Which environment frames do we need to keep during evaluation?

At any moment there is a set of active environments

Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled

23

Active environments:

•Environments for any function calls currently being evaluated

•Parent environments of functions named in active environments

Fibonacci Space Consumption

24

Assume we have
reached this step

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Fibonacci Space Consumption

25

Assume we have
reached this step

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Has an active environment
Can be reclaimed
Hasn't yet been created

Generators and Space

(Demo)

