

Announcements

Measuring Efficiency

A measure of how much resource consumption a computational task takes. An analysis of computer programs rather than a technique for writing them. In computer science, we are concerned with **time** and **space efficiency** The time efficiency of could determine how long a user has to wait for a webpage to load. The space efficiency of your algorithm could determine how much **memory** running your application takes

Orders of Growth

def prepend(lst, val): ""Add VAL to the front of LST.""" lst.insert(0, val)

Exponentiation

Goal: one more multiplication lets us double the problem size

```
def exp(b, n):
    if n == 0:
        return 1
    else:
        return b * exp(b, n-1)
```

	n
	1
	10
	100
_	1000

$$b^{n} = \begin{cases} 1 & \text{if } n = 0 \\ b \cdot b^{n-1} & \text{otherwise} \end{cases}$$

Goal: one more multiplication lets us double the problem size

n	Operations	
1	~1	
16	~5	
512	~9	
1024	~10 (Demo)	

$$b^{n} = \begin{cases} 1 & \text{if } n = 0\\ (b^{\frac{1}{2}n})^{2} & \text{if } n \text{ is even}\\ b \cdot b^{n-1} & \text{if } n \text{ is odd} \end{cases}$$

Goal: one more multiplication lets us double the problem size

```
def exp(b, n):
  if n == 0:
     return 1
  else:
     return b * exp(b, n-1)
def exp fast(b, n):
  if n == 0:
     return 1
  elif n % 2 == 0:
     return square(exp_fast(b, n//2))
  else:
     return b * exp_fast(b, n-1)
def square(x):
  return x * x
```

Linear time:

- Doubling the input doubles the time
- 1024x the input takes
 1024x as much time

Logarithmic time:

- Doubling the input increases the time by one step
- 1024x the input increases the time by only 10 steps

Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time

def overlap(a, b):
 count = 0
 for item in a:
 for other in b:
 if item == other:
 count += 1
 return count

overlap([3, 5, 7, 6], [4, 5, 6, 5])

	3	5	7	6
4	0	0	0	0
5	0	1	0	0
6	0	0	0	1
5	0	1	0	0

(Demo)

Exponential Time

Tree-recursive functions can take exponential time

Common Orders of Growth

Exponential growth. E.g., recursive fib Incrementing *n* multiplies *time* by a constant

Quadratic growth. E.g., overlap Incrementing *n* increases *time* by *n* times a constant

Linear growth. E.g., slow exp

Incrementing *n* increases *time* by a constant

Logarithmic growth. E.g., exp_fast Doubling *n* only increments *time* by a constant

Constant growth. Increasing n doesn't affect time

$$a \cdot b^{n+1} = (a \cdot b^n) \cdot b^n$$

$$a \cdot (n+1)^2 = (a \cdot n^2) + a \cdot (2n \cdot n^2)$$

$$a \cdot (n+1) = (a \cdot n) + a$$

$$a \cdot \ln(2 \cdot n) = (a \cdot \ln n) + a \cdot \ln 2$$

+ 1)

Order of Growth Notation

Big Theta and Big O Notation for Orders of Growth

Exponential growth. E.g., recursive fib Incrementing *n* multiplies *time* by a constant

Quadratic growth. E.g., overlap Incrementing *n* increases *time* by *n* times a constant

Linear growth. E.g., slow exp

Incrementing *n* increases *time* by a constant

Logarithmic growth. E.g., exp_fast Doubling *n* only increments *time* by a constant

Constant growth. Increasing *n* doesn't affect time

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

Memoization Revisited

Memoization

Idea: Remember the results that have been computed before

Keys are arguments that map to return values

Same behavior as f, if f is a pure function

(Demo)

Memoized Tree Recursion

Break

Revisiting Past Problems

Space and Environments

Which environment frames do we need to keep during evaluation?

At any moment there is a set of active environments

Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled

Active environments:

- •Environments for any function calls currently being evaluated
- •Parent environments of functions named in active environments

Fibonacci Space Consumption

Fibonacci Space Consumption

Generators and Space

