Efficiency

Announcements

Measuring Efficiency

Efficiency

A measure of how much resource consumption a computational task takes.

An analysis of computer programs rather than a technique for writing them.

In computer science, we are concerned with time and space efficiency
The time efficiency of could determine how long a user has to wait for a webpage to load.
The space efficiency of your algorithm could determine how much memory running your application takes

Orders of Growth

Prepend

def prepend(lst, val):
"""Add VAL to the front of LST."""
Ist.insert(0, val)

List Size	Operations
1	
10	
100	
1000	

Exponentiation

Exponentiation

Goal: one more multiplication lets us double the problem size

```
def exp(b, n):
    if n == 0:
        return 1
    else:
        return b * exp(b, n-1)
\[
b^{n}= \begin{cases}1 & \text { if } n=0 \\ b \cdot b^{n-1} & \text { otherwise }\end{cases}
\]
```

n
1
10
100

Exponentiation

Goal: one more multiplication lets us double the problem size

```
def exp_fast(b, n):
    if \(\mathrm{n}==0\) :
        return 1
    elif \(n \% 2==0\) :
        return square(exp_fast(b, \(\mathrm{n} / / 2)\) )
    else:
        return \(b\) * exp_fast(b, \(n-1)\)
```

n	Operations
1	~ 1
16	~ 5
512	~ 9
1024	~ 10

Exponentiation

Goal: one more multiplication lets us double the problem size

```
def exp(b, n):
    if n == 0:
        return 1
    else:
        return b * exp(b, n-1)
def exp_fast(b, n):
    if n == 0:
        return 1
    elif n % 2 == 0:
        return square(exp_fast(b, n//2))
    else:
        return b * exp_fast(b, n-1)
def square(x):
    return x * x
```


Linear time:

- Doubling the input doubles the time
- $1024 x$ the input takes 1024x as much time

Logarithmic time:

- Doubling the input increases the time by one step
- 1024x the input increases the time by only 10 steps

Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time

Exponential Time

Tree-recursive functions can take exponential time

```
def fib(n):
    if n == 0
        return 0
    elif n== 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```


Common Orders of Growth

Exponential growth. E.g., recursive fib
Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap

Incrementing n increases time by n times a constant

Linear growth. E.g., slow exp

Incrementing n increases time by a constant

Logarithmic growth. E.g., exp_fast

Doubling n only increments time by a constant

$$
a \cdot b^{n+1}=\left(a \cdot b^{n}\right) \cdot b
$$

$$
a \cdot(n+1)^{2}=\left(a \cdot n^{2}\right)+a \cdot(2 n+1)
$$

$$
a \cdot(n+1)=(a \cdot n)+a
$$

$$
a \cdot \ln (2 \cdot n)=(a \cdot \ln n)+a \cdot \ln 2
$$

Constant growth. Increasing n doesn't affect time

Order of Growth Notation

Big Theta and Big O Notation for Orders of Growth

Exponential growth. E.g., recursive fib

$$
\Theta\left(b^{n}\right) \quad O\left(b^{n}\right)
$$

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap

$\Theta\left(n^{2}\right)$
$O\left(n^{2}\right)$
Incrementing n increases time by n times a constant
$O(\log n)$

Linear growth. E.g., slow exp

Incrementing n increases time by a constant

Logarithmic growth. E.g., exp_fast

$\Theta(\log n)$
Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time
$\Theta(n)$
$O(n)$

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0
        return 0
    elif n== 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```


Memoization Revisited

Memoization

Idea: Remember the results that have been computed before

(Demo)

Memoized Tree Recursion

Break

Revisiting Past Problems

Abstract

Space

Space and Environments

Which environment frames do we need to keep during evaluation?
At any moment there is a set of active environments

Values and frames in active environments consume memory
Memory that is used for other values and frames can be recycled

Active environments:

-Environments for any function calls currently being evaluated
-Parent environments of functions named in active environments

Fibonacci Space Consumption

Fibonacci Space Consumption

Generators and Space

(Demo)

