Efficiency

Announcements

Measuring Efficiency

Efficiency

A measure of how much resource consumption a computational task takes.

An analysis of computer programs rather than a technique for writing them.

In computer science, we are concerned with time and space efficiency

The time efficiency of could determine how long a user has to wait for a webpage to load.

The space efficiency of your algorithm could determine how much memory running your application takes

Orders of Growth

Prepend

def prepend(lst, val):
""Add VAL to the front of LST."""
Ist.insert(0, val)

List Size

Operations

10

100

1000

Exponentiation

Exponentiation

Goal: one more multiplication lets us double the problem size

def exp(b, n):

fn==0: 1 if n =0
return 1 bt —= _1 .
else: b-b" otherwise

return b * exp(b, n-1)

N Operations

10
100

1000

Exponentiation

Goal: one more multiplication lets us double the problem size

def exp_fast(b, n): def square&x):
ifn==0: return X * X 1
return 1 n 1,19
elif n % 2 == 0: b" = ¢ (b2™)
return square(exp_fast(b, n//2)) . pn—1
else:

return b * exp_fast(b, n-1)
n

1

16

512

1024

ifn=20
if n 1s even

if n 1s odd

Operations

(Demo)

Exponentiation

Goal: one more multiplication lets us double the problem size

def exp(b, n):
ifn==0:
return 1
else:
return b * exp(b, n-1)

def exp fast(b, n):
if n==0:
return 1
elifn % 2 ==0:
return square(exp_fast(b, n//2))
else:
return b * exp_fast(b, n-1)

def square(x):
return x * X

Linear time:

* Doubling the input
doubles the time

* 1024x the input takes
1024x as much time

Logarithmic time:

* Doubling the input
Increases the time
by one step

* 1024x the input
Increases the time
by only 10 steps

Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time

3

def overlap(a, b):
count=0 4 0

for item in a:
for other in b: . 0
if item == other:
count += 1

return count 6 0
overlap([3, 5, 7, 6], [4, 5, 6, 5]) 5 0

(Demo)

Exponential Time

Tree-recursive functions can take exponential time def fib(n):
ifn==0:
return 0
fib(5) elif n == 1:
return 1
return fib(n-2) + fib(n-1)
fib(3) fib(4)
/ AN
fib(1) fib(2)
‘ | / \ fib(2) fib(3)
1 fib(0) fib(1) . N Y N
‘ ‘ fib(0) fib(1) fib(1) fib(2)
: | \ \ N
0 1 1 fib(0) fib(1)

Time for n+n Time for input n+1 Time for input n
Common Orders of Growth

Exponential growth. E.g., recursive fib 1
a-b"

B - b

|
N
Q

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap q - (n 1 1)2 _ (a . nz) +q- (2n + 1)

Incrementing n increases time by n times a constant

Linear growth. E.g., slow exp

Incrementing n increases fime by a constant

L ithmi th. E.Q. fast
ogarithmic grow g., exp_fas a - 111(2 : TL) — (a . In n) 4+ a-In?2

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Order of Growth Notation

Big Theta and Big O Notation for Orders of Growth

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap

Incrementing n increases time by n times a constant

Linear growth. E.g., slow exp

Incrementing n increases fime by a constant

Logarithmic growth. E.g., exp fast

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

O(b")

O(b")

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
ifn==0:
LT return 0
fib(5) elif n == 1:
7 return 1
P else:
e return fib(n-2) + fib(n-1)

e I R R p—"
—l—'_-— ._.—'--
. .
~,

" [fib(0) fib(1) , Hfib(1) fib2)
.\‘\) 2 ________________ L ‘/,/ :' ‘ ‘ ,'I.’ || ‘ / \ ’\.\ \
.0 1 7 % 1 fib0) fib(1)
~ e @ - mmm e @ ST ‘ ‘ ‘ !
(Demo) N0 1
S - @ - - - oo . @®-’

Memoization Revisited

(Demo)

Memoization

Idea: Remember the results that have been computed before

f memo(f): \
def memo(f): Keys are arguments that map to
"""""""""" , return values

N Emm o S § B O EEs B 5 ES § O Em 8 w5 Em

def memoized(n):
If n not in cache:

cache[n] = f(n)

returnmemoized | Same behavior as f,
If f iIs a pure function

(Demo)

Memoized Tree Recursion

,-"/’ \.\'\\ ‘
-7 fib(5) T
- @ Found in cache
S \\‘\ O
fib3) @ T fibd)
v N e :’!
fib(1) fib2) . e o
: ‘ fib O/ f'b\'l \ ’/‘/’fib(Z) Q‘/ | ib(3) .
. 1‘.\ | () | () I.,’ ; / \ ’\.\ / \ \.\.O
- - ib(0) fib(1) ifib(1) fib2)
L0 1 P / N
e @ m el @ ,' ‘ ‘ ;o ‘)
. 0 1 7+ 1 fib(0) fib(1) :
~ e O mrm e Hold B O ‘ ‘ !
0
~=Qmmmm O -

Break

Revisiting Past Problems

Space

Space and Environments

Which environment frames do we need to keep during evaluation?
At any moment there is a set of active environments
Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled

Active environments:

*Environments for any function calls currently being evaluated

Parent environments of functions named in active environments

Fibonacci Space Consumption

/

fib(1)

1

fib(3)

AN

fib(2)

/

fib(0)

0

.

Assume we have
reached this step

J

fib(2)
/ N /
fib(0) fib(1) fib(1)
0 1 1
_____ o
p

Fibonacci Space Consumption

Has an active environment

fib(5) Can be reclaimed
/ \ Hasn't yet been created
fib(3) fib(4)
/ AN
fib(1) fib(2)
‘ | / | N fib(2) fib(3)
1\ fib(0) fib(1) / . / AN
‘ ‘ fib(0) {‘%i't;a)w . fib(1) fib(2)
° [I Y I
0 o 1 1 fib(0) fib(1)
r \ A ‘

Assume we have
reached this step

Generators and Space

(Demo)

