
Iterators and Generators

Announcements

Midterm this Thursday 7/13 7-9pm

• Alteration request form is still open until the day of the exam for last minute/emergencies

Topical Review Sessions start today. Check out Ed

HW 2 recovery is released and due next Monday 7/17

Lab 5 is released and due Tuesday 7/11

HW 3 is released and due Friday 7/14. We highly recommend completing before the midterm.

Cats is released and checkpoint is due tomorrow, Tuesday 7/11. Whole project is due Tuesday
7/18

Lab 6 was released early for extra practice opportunities, due on 7/13

Check discussion participation on Gradescope, instructions on Ed

As a reminder be kind to staff and other students, citizenship policy in the syllabus

2

https://edstem.org/us/courses/40197/discussion/3246762
https://cs61a.org/lab/lab06/
https://edstem.org/us/courses/40197/discussion/3219248
https://cs61a.org/articles/about/#citizenship

Iterables

Iterables

Iterables are objects (or data) that can be iterated over

This means it contains some elements in some order that can be kept track of by going from
one element to the next; looped over

EG: can use inside for loop or list comprehension

4

?

Iterators

Iterators

6

A container can provide an iterator that provides access to its elements in order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]

>>> t = iter(s)

>>> next(t)

3

>>> next(t)

4
>>> u = iter(s)

>>> next(u)

3

>>> next(t)

5

>>> next(u)

4

(Demo)

Iterators are like bookmarks

7

These

Are

Words

In

This book

All iterables

All iterators

[1, 2, 3, 4]
{‘k’: ‘v’}

“Hello world”

iter([1, 2, 3, 4])

Objects with “___ is a(n) ___” relationship

Dictionary Iteration

Views of a Dictionary

9

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}

>>> d['zero'] = 0

>>> k = iter(d.keys()) # or iter(d)

>>> next(k)

'one'

>>> next(k)

'two'

>>> next(k)

'three'

>>> next(k)

'zero'

>>> v = iter(d.values())

>>> next(v)

1

>>> next(v)

2

>>> next(v)

3

>>> next(v)

0

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

>>> i = iter(d.items())

>>> next(i)

('one', 1)

>>> next(i)

('two', 2)

>>> next(i)

('three', 3)

>>> next(i)

('zero', 0)

(Demo)

For Statements

(Demo)

Built-In Iterator Functions

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

12

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

list(iterable):

tuple(iterable):

sorted(iterable):

Create a list containing all x in iterable

Create a tuple containing all x in iterable

Create a sorted list containing x in iterable

(Demo)

Zip

The Zip Function

The built-in zip function returns an iterator over co-indexed tuples.

>>> list(zip([1, 2], [3, 4]))
[(1, 3), (2, 4)]

If one iterable is longer than the other, zip only iterates over matches and skips extras.

>>> list(zip([1, 2], [3, 4, 5]))
[(1, 3), (2, 4)]

More than two iterables can be passed to zip.

>>> list(zip([1, 2], [3, 4, 5], [6, 7]))
[(1, 3, 6), (2, 4, 7)]

Implement palindrome, which returns whether s is the same forward and backward.

>>> palindrome([3, 1, 4, 1, 3])
True
>>> palindrome([3, 1, 4, 1, 5])
False

14

>>> palindrome('seveneves')
True
>>> palindrome('seven eves')
False

Using Iterators

Reasons for Using Iterators

Code that processes an iterator (via next) or iterable (via for or iter) makes few
assumptions about the data itself.

• Changing the data representation from a list to a tuple, map object, or dict_keys doesn't
require rewriting code.

• Others are more likely to be able to use your code on their data.

An iterator bundles together a sequence and a position within that sequence as one object.

• Passing that object to another function always retains the position.

• Useful for ensuring that each element of a sequence is processed only once.

• Limits the operations that can be performed on the sequence to only requesting next.

16

Example: Casino Blackjack

Walkthrough video: https://youtu.be/p0acHiRp44M

17

https://youtu.be/p0acHiRp44M

Generators

Generators and Generator Functions

A generator function is a function that yields values instead of returning them

A normal function returns once; a generator function can yield multiple times

A generator is an iterator created automatically by calling a generator function

When a generator function is called, it returns a generator that iterates over its yields

19

(Demo)

>>> def plus_minus(x):

... yield x

... yield -x

>>> t = plus_minus(3)

>>> next(t)

3

>>> next(t)

-3

>>> t

<generator object plus_minus ...>

Iterators are like bookmarks

All iterables

All iterators

[1, 2, 3, 4]

{‘k’: ‘v’}

“Hello world”
iter([1, 2, 3, 4])

All
generators

t = plus_minus(3)

Objects with “___ is a(n) ___” relationship

Generators & Iterators

Generator Functions can Yield from Iterables

A yield from statement yields all values from an iterator or iterable (Python 3.3)

22

def a_then_b(a, b):

 yield from a

 yield from b

def a_then_b(a, b):

 for x in a:

 yield x

 for x in b:

 yield x

def countdown(k):

 if k > 0:

 yield k

 yield from countdown(k-1)

>>> list(a_then_b([3, 4], [5, 6]))

[3, 4, 5, 6]

>>> list(countdown(5))

[5, 4, 3, 2, 1]

(Demo)

Example: Partitions

Yielding Partitions

A partition of a positive integer n, using parts up to size m, is a way in which n can be
expressed as the sum of positive integer parts up to m in increasing order.

24

partitions(6, 4)

3 + 3 = 6

1 + 1 + 2 + 2 = 6

2 + 4 = 6

1 + 1 + 4 = 6

1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6

def count_partitions(n, m):

 if n == 0:

 return 1

 elif n < 0:

 return 0

 elif m == 0:

 return 0
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

(Demo)

