ADT Trees

Announcements

Trees

Tree Abstraction

Recursive description (wooden trees):

A tree has a root label and a list of branches
Each branch is a tree
A tree with zero branches is called a leaf
A tree starts at the root

Relative description (family trees):
Each location in a tree is called a node
Each node has a label that can be any value One node can be the parent/child of another

The top node is the root node

People often refer to labels by their locations: "each parent is the sum of its children"

Implementing the Tree Abstraction

Implementing the Tree Abstraction

Tree Processing

(Demo)

Creating Trees

A function that creates a tree from another tree is typically also recursive

```
def increment_leaves(t):
    """Return a tree like t but with leaf labels incremented."""
    if is_leaf(t):
        return tree(label(t) + 1)
    else:
        bs = [increment_leaves(b) for b in branches(t)]
        return tree(label(t), bs)
def increment(t):
    """Return a tree like t but with all labels incremented."""
    return tree(label(t) + 1, [increment(b) for b in branches(t)])
```


Double

def double(t):
"""Returns a tree identical to T, but with all
labels doubled
>>> t = tree(1, [tree(2), tree(3)])
\ggg double(t)
[2, [4], [6]]
"""
if \qquad :
else:

Double - solution

def double(t):
"""Returns a tree identical to T, but with all
labels doubled
>>> t = tree(1, [tree(2), tree(3)])
\ggg double(t)
[2, [4], [6]]
if is_leaf(t):
return tree(label(t) * 2)
else:
return tree(label(t) * 2,
[double(b) for b in branches(t)])

Double - solution (shorter!)

def double(t):
"""Returns a tree identical to T, but with all
labels doubled
>>> t = tree(1, [tree(2), tree(3)])
\ggg double(t)
[2, [4], [6]]
"""
return tree(label(t) * 2,
[double(b) for b in branches(t)])

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

```
def count_leaves(t):
    """Count the leaves of a tree."""
    if is_leaf(t)
        return 1
    else:
        branch_counts = [count_leaves(b) for b in branches(t)]
        return sum(branch_counts)
                (Demo)
```


Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree
Hint: If you sum a list of lists, you get a list containing the elements of those lists

```
>>> sum([ [1], [2, 3], [4] ], [])
[1, 2, 3, 4]
>>> sum([ [1] ], [])
[1]
>>> sum([ [[1]], [2] ], [])
[[1], 2]
```

```
def leaves(tree):
    """Return a list containing the leaf labels of tree.
    >>> leaves(fib_tree(5))
```

 \([1,0,1,0,1,1,0,1]\)
 """
 if is_leaf(tree):
 return [label(tree)]
 else:
 return sum(List of leaf labels for each branch , [])
 branches(tree)
 leaves(tree)
 [branches(b) for b in branches(tree)]
 [leaves(b) for b in branches(tree)]
 [b for b in branches(tree)]
[s for s in leaves(tree)]
[branches(s) for s in leaves(tree)]
[leaves(s) for s in leaves(tree)]

Tree Representation

Example: Printing Trees

(Demo)

Break

More Tree Examples

Example: Summing Paths

(Demo)

Example: Counting Paths

Count Paths that have a Total Label Sum

```
def count_paths(t, total):
    """Return the number of paths from the root to any node in tree t
    for which the labels along the path sum to total.
    >>> t = tree(3,[tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)]]])
    >>> count_paths(t, 3)
    2
    >>> count_paths(t, 4)
    2
    >>> count_paths(t, 5)
    0
    >>> count_paths(t, 6)
    1
    >>> count_paths(t, 7)
    2
    """
    if label(t) == total:
        found =
        1
    else:
        found = 0
```


return found + \qquad ([count paths(b, total - label(t) for b in branches(t)])

Fibonacci Trees Revisited

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if \(n==0\)
        return 0
    elif \(\mathrm{n}==1\) :
        return 1
    else:
        return fib(n-2) + fib(n-1)
```


> Memoization

Memoization

Idea: Remember the results that have been computed before

(Demo)

Memoized Tree Recursion

