
Data Abstraction

Announcements

• Lab 3 due on Wednesday 7/05

• Lab 4 due on Thursday 7/06

• Hog Project due Thursday 7/06

• Turn in by Wednesday 7/05 for 1 EC point

• Project Party TODAY (4-6:30) and Thursday (3-5:30)

• Grades for assignments have been released

• Carefully look through this Ed post

• Regrade request post will be made soon

• If you had an approved extension and it didn’t go through request a regrade

• Homework Recovery starts this week!

• Midterm 7/13 7-9 pm

• Exam alterations and accommodations, please fill out the form

2

https://edstem.org/us/courses/40197/discussion/3236552
https://cs61a.org/go.cs61a.org/exam-alts

Office Hours and Hog Checkpoint

So important it gets its own slide

As of right now, only 320 out of 473 students have submitted the Hog Checkpoint

This is 1 point and contributes to your grade

Missing it is not the end of the world, but you should be aiming to get this in on time,
and we expect you to get it turned in by the final deadline

Utilize the resources we offer!

Utilize resources amongst other students (Within what academic conduct allows)

You should be able to submit assignments on time in this course with the resources and
support we provide

Cats is released immediately after Hog is due, don’t put it off, start early!

3

Data Abstraction

Data Abstraction

• Compound values combine other values together

A date: a year, a month, and a day

A geographic position: latitude and longitude

• Data abstraction lets us manipulate compound values as units

• Isolate two parts of any program that uses data:

How data are represented (as parts)

How data are manipulated (as units)

• Data abstraction: A methodology by which functions enforce an
abstraction barrier between representation and use

All
Programmers

Great
Programmers

5

Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation may be lost! (Demo)

Assume we can compose and decompose rational numbers:

numerator

denominator

•rational(n, d) returns a rational number x

•numer(x) returns the numerator of x

•denom(x) returns the denominator of x

Constructor

Selectors

6

Rational Number Arithmetic

3

2

3

5
*

9

10
=

3

2

3

5
+

21

10
=

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

7

General Form

def mul_rational(x, y):

 return rational(numer(x) * numer(y),

 denom(x) * denom(y))

Rational Number Arithmetic Implementation

•rational(n, d) returns a rational number x

•numer(x) returns the numerator of x

•denom(x) returns the denominator of x

Constructor

def add_rational(x, y):

 nx, dx = numer(x), denom(x)

 ny, dy = numer(y), denom(y)

 return rational(nx * dy + ny * dx, dx * dy)

def print_rational(x):

 print(numer(x), '/', denom(x))

def rationals_are_equal(x, y):

 return numer(x) * denom(y) == numer(y) * denom(x)

8

SelectorsSelectors

These functions implement an
abstract representation

for rational numbers

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

Example

Representing Rational Numbers

def rational(n, d):

 """Construct a rational number that represents N/D."""

 return [n, d]

Representing Rational Numbers

Construct a list

Select item from a list

def numer(x):

 """Return the numerator of rational number X."""

 return x[0]

def denom(x):

 """Return the denominator of rational number X."""

 return x[1]

10

(Demo)

from math import gcd

def rational(n, d):

 """Construct a rational that represents n/d in lowest terms."""

 g = gcd(n, d)

 return [n//g, d//g]

Reducing to Lowest Terms

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

1

2
=

25

50

1/25

1/25
*

1

2
=

15

6

1/3

1/3
*

5

2
=

Greatest common divisor

11

(Demo)

Abstraction Barriers

Abstraction Barriers

13

Parts of the program that... Treat rationals as... Using...

Use rational numbers  
to perform computation whole data values add_rational, mul_rational

rationals_are_equal, print_rational

Create rationals or implement
rational operations	

numerators and
denominators rational, numer, denom

Implement selectors and
constructor for rationals	 two-element lists list literals and element selection

Implementation of lists

Does not use
constructors Twice!

No selectors!

And no constructor!

Violating Abstraction Barriers

add_rational([1, 2], [1, 4])

def divide_rational(x, y):

 return [x[0] * y[1], x[1] * y[0]]

14

Data Representations

What are Data?

• We need to guarantee that constructor and selector functions work
together to specify the right behavior

• Behavior condition: If we construct rational number x from numerator
n and denominator d, then numer(x)/denom(x) must equal n/d

• Data abstraction uses selectors and constructors to define behavior

• If behavior conditions are met, then the representation is valid

You can recognize an abstract data representation by its behavior

16

(Demo)

def rational(n, d):

 def select(name):

 if name == 'n':

 return n

 elif name == 'd':

 return d

 return select

def numer(x):

 return x('n')

def denom(x):

 return x('d')

This
function

represents
a rational

number

Rationals Implemented as Functions

Constructor is a
higher-order function

Selector calls x

17pythontutor.com/composingprograms.html#code=def%20rational%28n,
%20d%29%3A%0A%20%20%20%20def%20select%28name%29%3A%0A%20%20%20%20%20%20%20%20if%20name%20%3D%3D%20'n'%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20n%0A%20%20%20%20%20%20%20%20elif%20name%20%3D%3D%20'd'%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20d%0A%20%20%20%20return%20select%
0A%20%20%20%20%0Adef%20numer%28x%29%3A%0A%20%20%20%20return%20x%28'n'%29%0A%0Adef%20denom%28x%29%3A%0A%20%20%20%20return%20x%28'd'%29%0A%20%20%20%20%0Ax%20%3D%20rational%283,%208%29%0Anumer%28x%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

x = rational(3, 8)

numer(x)

Mutability

Objects

(Demo)

Objects

•Objects represent information

•They consist of data and behavior, bundled together to create abstractions

•Objects can represent things, but also properties, interactions, & processes

•A type of object is called a class; classes are first-class values in Python

•Object-oriented programming:

•A metaphor for organizing large programs

•Special syntax that can improve the composition of programs

•In Python, every value is an object

• All objects have attributes

• A lot of data manipulation happens through object methods

• Functions do one thing; objects do many related things

20

Example: Strings

(Demo)

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

8
ro

ws
:

3
bi

ts

16 columns: 4 bits

•Layout was chosen to support sorting by character code

•Rows indexed 2-5 are a useful 6-bit (64 element) subset

•Control characters were designed for transmission

"Line feed" (\n)"Bell" (\a)

22

(Demo)

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 137,994 characters in Unicode 12.1

•150 scripts (organized)

•Enumeration of character properties,
such as case

•Supports bidirectional display order

•A canonical name for every character

LATIN CAPITAL LETTER A

DIE FACE-6

EIGHTH NOTE

'⚅' '♪'
23

(Demo)

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

Mutation Operations

Some Objects Can Change

First example in the course of an object changing state

The same object can change in value throughout the course of computation

25

[Demo]

👶
BABY

👧
GIRL

👩
WOMAN

👵
OLDER 
WOMAN

jessica
same_person

Unicode
character

name

All names that refer to the same object are affected by a mutation

Only objects of mutable types can change: lists & dictionaries

{Demo}

https://goo.gl/xB5P6Q

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

26

>>> four = [1, 2, 3, 4]

>>> len(four)

4

>>> mystery(four)

>>> len(four)

2

>>> four = [1, 2, 3, 4]

>>> len(four)

4

>>> another_mystery() # No arguments!

>>> len(four)

2

def mystery(s):

 s.pop()

 s.pop()

def another_mystery():

 four.pop()

 four.pop()

https://pythontutor.com/cp/
composingprograms.html#code=def%20mystery%28s%29%3A%0A%20%20%20%20s.pop%28%29%0A%20%20%20%20s.pop%28%29%0A%0Afour%20%3D%20%5B1,%202,%203,%204%5D%0Amystery%28four%29%0Aprint%28four%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

def mystery(s):

 s[2:] = []

or

Tuples

(Demo)

Tuples are Immutable Sequences

Immutable values are protected from mutation

28

The value of an expression can change because of changes in names or objects

An immutable sequence may still change if it contains a mutable value as an element

>>> turtle = (1, 2, 3)

>>> ooze()

>>> turtle

(1, 2, 3)

>>> turtle = [1, 2, 3]

>>> ooze()

>>> turtle

['Anything could be inside!']

>>> x + x

>>> x + x

Name change: Object mutation:

>>> x = 2

4

>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]

>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> s = ([1, 2], 3)

>>> s[0] = 4

ERROR

>>> s = ([1, 2], 3)

>>> s[0][0] = 4

>>> s

([4, 2], 3)

>>> x + x

>>> x + x

Mutation

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

• Conversely, we could have two lists that happen to have the same contents, but are different

30

>>> a = [10]

>>> b = [10]

>>> a == b

True

>>> b.append(20)

>>> a

[10]

>>> b

[10, 20]

>>> a == b

False

>>> a = [10]

>>> b = a

>>> a == b

True

>>> a.append(20)

>>> a

[10, 20]

>>> b

[10, 20]

>>> a == b

True

Identity Operators

Identity

<exp0> is <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to the same object

Equality

<exp0> == <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to equal values

Identical objects are always equal values

31

(Demo)

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

32
pythontutor.com/composingprograms.html#code=def%20f%28s%3D[]%29%3A%0A%20%20%20%20s.append%283%29%0A%20%20%20%20return%20len%28s%29%0A%20%20%20%20%0Af%28%29%0Af%28%29%0Af%28%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

>>> def f(s=[]):

... s.append(3)

... return len(s)

...

>>> f()

1

>>> f()

2

>>> f()

3

Each time the function
is called, s is bound
to the same value!

Summary

33

Mutable Functions

A Function with Behavior That Varies Over Time

>>> withdraw(25)

75

>>> withdraw(25)

50

>>> withdraw(60)

'Insufficient funds'

>>> withdraw(15)

35

>>> withdraw = make_withdraw_list(100)

Let's model a bank account that has a balance of $100

Argument: 
amount to withdrawReturn value:

remaining balance

Different

return value!

Where's this balance
stored?

In a (mutable) list
referenced in the parent
frame of the function

35

Second withdrawal of
the same amount

Mutable Values & Persistent Local State

withdraw doesn't
reassign any name
within the parent

It changes the contents
of the b list

36

Name bound
outside of

withdraw def

Element
assignment

changes a list

