
Sequences & Containers

Announcements

• Lab 3 due on Wednesday

• Hog Project due Thursday
• Turn in by Wednesday for 1 EC point
• Project Party on Wednesday and Thursday

• Grades for assignments have been released
• Please carefully look through the Ed post

• Homework Recovery starts this week!

• July 4th - No lecture tomorrow
• There will no makeup lecture, tutoring sections, OH, and discussion

• Midterm July 13th 7-9 pm
• Exam alternations and accommodations, please fill out the form: go.cs61a.org/exam-alts

2

Sequences

Sequences

A sequence is an ordered collection of values

4

"hello world"

strings
sequence of characters

[1, “a”, 2, “b”]

lists
sequence of values of
any data type

range(0, 10)

ranges
sequence of numbers

Strings

Strings are an Abstraction

Representing data:

'200' '1.2e-5' 'False' '[1, 2]'

Representing language:

"""And, as imagination bodies forth
The forms of things unknown, the poet's pen
Turns them to shapes, and gives to airy nothing
A local habitation and a name.
"""

Representing programs:

'curry = lambda f: lambda x: lambda y: f(x, y)'

6

String Literals Have Three Forms

>>> 'I am string!'
'I am string!'

>>> "I've got an apostrophe"
"I've got an apostrophe"

>>> '您好'
'您好'

>>> """The Zen of Python
claims, Readability counts.
Read more: import this."""
'The Zen of Python\nclaims, Readability counts.\nRead more: import this.'

"Line feed" character
represents a new line

A backslash "escapes" the
following character

Single-quoted and double-quoted
strings are equivalent

7

Lists

Lists

9

A list is a container that holds a sequence of values of any data type

#empty list

>>> l = []

A list can hold any Python value, separated by commas

>>> names = [“Tim”, “Jordan”, “Noor”]

>>> funcs = [min, add, pow]

>>> years = [2023, 2019, 1999]

>>> apply = [pow, 2.0, 3, “eight”, “?”]

Creating Lists

10

>>> nums = [2, 81, 16]

>>> calc = [min(2, 3), square(9, 9), pow(2, 4)]

>>> nums

[2, 81, 16]

>>> calc

[2, 81, 16]

>>> list([2, 8, 16])

[2, 81, 16]

List Length

11

The len function computes the length of a list

#empty list

>>> l = []

>>> length = len(l)

>>> length

0

>>> names = [“Tim”, “Jordan”, “Noor”]

>>> len(names)

3

Indexing Lists

12

Each item in a list has an index, starting with 0 -> len(list) - 1

colors = [“Blue”, “Magenta”, “Yellow”, “Licorice”]

index 0 1 2 3

>>> len(colors)

4

You can access an items by putting square brackets [] around it

>>> colors[3]

“Licorice”

>>> getitem(colors, 2)

“Yellow”
[Demo]

Concatenation and Repetition

13

Lists can be added using the + operator

>>> colors = [“Blue”, “Magenta”, “Yellow”, “Licorice”]

>>> more = [“Orange”, “Lavender”]

>>> colors + more

[“Blue”, “Magenta”, “Yellow”, “Licorice”, “Orange”, “Lavender”]

>>> colors + more * 2

[“Blue”, “Magenta”, “Yellow”, “Licorice”, “Orange”, “Lavender”, “Orange”, “Lavender”]

>>> add(colors, mul(more, 2))

[“Blue”, “Magenta”, “Yellow”, “Licorice”, “Orange”, “Lavender”, “Orange”, “Lavender”]

List Slicing

14

Through slicing, a subpart of the list is obtained by passing in a <start index>, a
non-inclusive <end index>, and [step size]

list[<start index>:<end index>:[step size]]

>>> s = [1, 3, 5, 7, 2, 4, 6, 8]

>>> s[0:3]

[1, 3, 5]

>>> s[0::2]

[1, 5, 2, 6]

>>> s[::-1]

[8, 6, 4, 2, 7, 5, 3, 1] [Python Tutor Demo]

Nested Lists

15

Recall a list can contain any Python value, including another list!

>>> inventory = [[“Apples”, 2], [“Oranges”, 4], [“Onions”, 10]]

>>> len(inventory)

3

Be careful with len!

>>> inventory[1]

[“Oranges”, 4]

>>> inventory[1][1]

4

Box-and-Pointer Notation

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

17

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

18
pythontutor.com/composingprograms.html#code=pair%20%3D%20[1,%202]%0A%0Anested_list%20%3D%20[[1,%202],%20[],%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20[[3,%20False,%20None],
%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20[4,%20lambda%3A%205]]]&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=4

Strings as Sequences

19

Just as with lists, strings can also be indexed, concatenated, and sliced!

Recall, they are also sequences, therefore, all these ideas can be applied to them

(“Demo”)

Containers

Containers

Built-in operators for testing whether an element appears in a compound value: not
in and in

21

>>> digits = [1, 8, 2, 8]

>>> 1 in digits
True

>>> 8 in digits
True

>>> 5 not in digits
True

>>> not(5 in digits)
True

(Demo)

Break

For Statements

For Statement Execution Procedure

for <name> in <expression>:
 <suite>

1. Evaluate the header <expression>, which must yield an iterable value (a sequence)

2. For each element in that sequence, in order:

A. Bind <name> to that element in the current frame

B. Execute the <suite>

24

(Demo)

Sequence Unpacking in For Statements

>>> pairs = [[1, 2], [2, 2], [3, 2], [4, 4]]

>>> same_count = 0

>>> for x, y in pairs:
... if x == y:
... same_count = same_count + 1

>>> same_count
2

A sequence of
fixed-length sequences

A name for each element in a
fixed-length sequence

Each name is bound to a value, as in
multiple assignment

25

Ranges

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

The Range Type

>>> list(range(-2, 2))
[-2, -1, 0, 1]

>>> list(range(4))
[0, 1, 2, 3]

The range function creates a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.

range(-2, 2)

List constructor

Range with a 0 starting value

27

range (<start>, <end>, [skip])

List Comprehensions

>>> letters = ['a', 'b', 'c', 'd', 'e', 'f', 'm', 'n', 'o', 'p']
>>> [letters[i] for i in [3, 4, 6, 8]]

['d', 'e', 'm', 'o']

List Comprehensions

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

A combined expression that evaluates to a list using this evaluation procedure:

1. Add a new frame with the current frame as its parent

2. Create an empty result list that is the value of the expression

3. For each element in the iterable value of <iter exp>:

A. Bind <name> to that element in the new frame from step 1

B. If <filter exp> evaluates to a true value, then add the value of <map exp>
to the result list

29(Demo)

Aggregation

Several built-in functions take iterable arguments and aggregate them into a value

• sum(iterable[, start]) -> value

Return the sum of an iterable (not of strings) plus the value
of parameter 'start' (which defaults to 0). When the iterable is
empty, return start.

• max(iterable[, key=func]) -> value
max(a, b, c, ...[, key=func]) -> value

With a single iterable argument, return its largest item.
With two or more arguments, return the largest argument.

• all(iterable) -> bool

Return True if bool(x) is True for all values x in the iterable.
If the iterable is empty, return True.

30

Example: Promoted

First in Line

Implement promoted, which takes a sequence s and a one-argument function f. It returns a
list with the same elements as s, but with all elements e for which f(e) is a true value
ordered first. Among those placed first and those placed after, the order stays the same.

32

def promoted(s, f):
 """Return a list with the same elements as s, but with all
 elements e for which f(e) is a true value placed first.

 >>> promoted(range(10), odd) # odds in front
 [1, 3, 5, 7, 9, 0, 2, 4, 6, 8]
 """
 return ___[e for e in s if f(e)] + [e for e in s if not f(e)]

Dictionaries

{'Dem': 0}

Limitations on Dictionaries

Dictionaries are collections of key-value pairs

Dictionary keys do have two restrictions:

• A key of a dictionary cannot be a list or a dictionary (or any mutable type)

• Two keys cannot be equal; There can be at most one value for a given key

This first restriction is tied to Python's underlying implementation of dictionaries

The second restriction is part of the dictionary abstraction

If you want to associate multiple values with a key, store them all in a sequence value

34

Summary

• Containers, such as lists and dictionaries, can store sequences of values

• List slicing creates a new list
• list[<start index>:<end index>:[step size]]

• We can iterate over sequences using for statements

for <name> in <expression>:
 <suite>
• It is more concise than while statements, however, there are times when a while
statement is more suitable

• List comprehensions allow us to return a new list using values of an existing list

• In one line: [<map exp> for <name> in <iter exp> if <filter exp>]

35

