
Functional Abstraction

Announcements

Sign up for tutorials here!

Hog, Homework 1, and Lab 1 have been released

Hog checkpoint is due this Friday, 6/30. The entire project is due next Thursday 7/6, you
can submit 1 day early, Wednesday 7/5, for a bonus point.

If you see a 0/1 for lab, don’t panic, it takes time to update. Please see this Ed post

Regular OH schedule this week

Instructor OH starts this week

Advising OH starts this week

Sections are finalized on 6/30. No section switches after this point

2

https://tutorials.cs61a.org/
https://edstem.org/us/courses/40197/discussion/3224665
https://cs61a.org/office-hours/
https://cs61a.org/articles/advising

Decorators

Function Decorators

(Demo)

@trace1
def triple(x):
 return 3 * x

is identical to

def triple(x):
 return 3 * x
triple = trace1(triple)

Decorated
function

Why not just
use this?

Function
decorator

4

Return

Return Statements

A return statement completes the evaluation of a call expression and provides its value:

6

f(x) for user-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Only one return statement is ever executed while executing the body of a function
def end(n, d):
 """Print the final digits of N in reverse order until D is found.
 Assume N is non-negative

 >>> end(34567, 5)
 7
 6
 5
 """ while n > 0:
 last, n = n % 10, n // 10
 print(last)
 if d == last:
 return None (Demo)

Abstraction

Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name square.

• Square computes the square of a number.

• Square computes the square by calling mul.

def square(x):
 return pow(x, 2)

def square(x):
 return mul(x, x-1) + x

If the name “square” were bound to a built-in function,
sum_squares would still work identically.

Yes

No

Yes

No

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

8

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

true_false rolled_a_one

d dice

play_helper take_turn

9

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

my_int num_rolls

l, I, O k, i, m

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

discriminant = square(b) - 4 * a * c
x1 = (-b + sqrt(discriminant)) / (2 * a)

10

More Naming Tips

• Names can be long if they help
document your code:

average_age = average(age, students)

is preferable to

Compute average age of students
aa = avg(a, st)

• Names can be short if they represent
generic quantities: counts,
arbitrary functions, arguments to
mathematical operations, etc.

n, k, i - Usually integers
x, y, z - Usually real numbers
f, g, h - Usually functions

PRAC
TICA

L

GUID
ELIN

ES

Break

Errors & Tracebacks

Taxonomy of Errors

Syntax Errors

13

(Demo)

Runtime Errors

Logic & Behavior Errors

Detected by the Python
interpreter (or editor)
before the program executes

Detected by the Python
interpreter while the program
executes

Not detected by the Python
interpreter; what tests are for

Common Bugs

NameError

14

SyntaxError

Logic & Behavior Errors

Spelling

Hello != hello != helo

Missing parenthesis, Missing
close quotes (EOL)

= vs ==

Infinite loops

Off by 1 errors

i = 0
while i < 10:
 print(i)

Common Bugs

IndentationError

15

TypeError

IndexError

Improper indentation

Invalid types for an operator

Using non-function objects in a function call

Passing an incorrect number of arguments to a function

Index a sequence with a number that exceeds the size of
the sequence (preview to next week)

def f(x):
 print(x)
 return(x)

Debugging

(Demo)

Debugging Strategies and Techniques

Traceback messages

Running Doctests + writing your own tests

Using print statements (DEBUG: for okpy)

Interactive debugging

PythonTutor

Assert statements

17

Implementing Functions

Implementing a Function
Read the description

Verify the examples & pick a simple one

Read the template

Implement without the template, then change
your implementation to match the template.
OR
If the template is helpful, use it.

Annotate names with values from your chosen
example

Write code to compute the result

Did you really return the right thing?

Check your solution with the other examples

19

def remove(n, digit):
 """Return all digits of non-negative N
 that are not DIGIT, for some
 non-negative DIGIT less than 10.

 >>> remove(231, 3)
 21
 >>> remove(243132, 2)
 4313
 """
 kept, digits = 0, 0

 while ________________________________:

 n, last = n // 10, n % 10

 if _______________________________:

 kept = _______________________

 digits = _____________________

 return _______________________________

231 33

21

n > 0

last != digit

kept + last

kept

digits + 1

1010

4

**digits

231

1

+ 30

+ 200

231

1

+ 20

21

Implementing a Function
Read the description

Verify the examples & pick a simple one

Read the template

Implement without the template, then change
your implementation to match the template.
OR
If the template is helpful, use it.

Annotate names with values from your chosen
example

Write code to compute the result

Did you really return the right thing?

Check your solution with the other examples

20

def remove(n, digit):
 """Return all digits of non-negative N
 that are not DIGIT, for some
 non-negative DIGIT less than 10.

 >>> remove(231, 3)
 21
 >>> remove(243132, 2)
 4313
 """
 kept, digits = 0, 0

 while ________________________________:

 n, last = n // 10, n % 10

 if _______________________________:

 kept = _______________________

 digits = _____________________

 return _______________________________

231 3

21

n > 0

last != digit

kept + last

kept

/10

* 10 ** (digits-1)

digits + 1

round()

