
Environments

Announcements

- Hog, HW1, and Lab 1 have been released!
- Lab 1 is due tomorrow
- HW 1 is due Thursday
- Hog Checkpoint is due Friday

- Tutoring section sign ups released!
- tutorials.cs61a.org

- Regular OH this week!
- Calendar: https://cs61a.org/office-hours/

- Instructor OH Schedule in Soda 781
- Jordan: Mondays, 12:45 - 1:45 pm
- Noor: Tuesdays, 9:30 - 10:30 am
- Tim: Thursdays, 12:45 - 1:45 pm

- Sections will be finalized 6/30
- sections.cs61a.org

http://tutorials.cs61a.org
https://cs61a.org/office-hours/

Environment Diagrams

Environment Diagrams

Name Value

Import statement

Each name is bound to a value

Within a frame, a name cannot be repeated

Statements and expressions

Arrows indicate evaluation order

Frames (right):Code (left):

Environment diagrams visualize the interpreter’s process.

4

Just executed

Next to execute Assignment statement

Why Use Environment Diagrams?

• They help us understand why the programs we design work the way they do!
Predict how a program will behave

5

• They can also be useful in debugging!
 When we run into an unexpected error, we can trace back our steps!

What We Have Seen So Far

• Assignment Statements
 x = 2
 var = 5

6

• Def Statements
 def square(x):

 return x * x

• Call Expressions
 square(var) Environment Diagram

Assignment Statements

Execution rule for assignment statements:

1. Evaluate all expressions to the right of = from left to right.

2. Bind all names to the left of = to those resulting values in the current frame.

7

Just executed

Just executed

Next to execute

http://pythontutor.com/composingprograms.html#code=a%20%3D%201%0Ab%20%3D%202%0Ab,%20a%20%3D%20a%20%2B%20b,%20b&cumulative=false&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Calling User-Defined Functions

Procedure for calling/applying user-defined functions:

1. Add a local frame
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

Local frame

Original name of
function called

Formal parameter
bound to argument Return value

(not a binding!)

Built-in function

User-defined
function

8
http://pythontutor.com/composingprograms.html#code=from%20operator%20import%20mul%0Adef%20square%28x%29%3A%0A%20%20%20%20return%20mul%28x,%20x%29%0Asquare%28-2%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Calling User-Defined Functions

A function’s signature has all the
information needed to create a local frame

9

Procedure for calling/applying user-defined functions:

1. Add a local frame
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

http://pythontutor.com/composingprograms.html#code=from%20operator%20import%20mul%0Adef%20square%28x%29%3A%0A%20%20%20%20return%20mul%28x,%20x%29%0Asquare%28-2%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Frames

10

• A frame keeps track of variable-to-value bindings

• By default, the global frame is the starting frame

• It doesn’t correspond to a specific call expression

• Every call expression has a corresponding frame

• The parent of a function is the frame is which is was defined not
called

• Important for variable lookup!

• If you cannot find a name in the current frame, you can go up to its
parent until you reach the global frame

• If it is not found, you get a NameError: name 'x' is not defined

http://pythontutor.com/composingprograms.html#code=from%20operator%20import%20mul%0Adef%20square%28x%29%3A%0A%20%20%20%20return%20mul%28x,%20x%29%0Asquare%28-2%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Demo

`

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame.

11

. .

How to Draw an Environment Diagram

How to Draw an Environment Diagram

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.

2. Copy the parent of the function to the local frame: [parent=<label>]

3. Bind the <formal parameters> to the arguments in the local frame.

4. Execute the body of the function in the environment that starts with the local frame.

12

.

.

.

Check Your Understanding: Calling Functions

13

.

Evaluation Order

14

• An environment diagram reflects Python evaluation order

• Evaluate the operator, then the operands, finally apply the operator to the operands

pow(pow(y, x), pow(x, y))

func pow(x, y) [parent=Global]

f2: pow [parent=Global]

9

f3: pow [parent=Global]

8
f4: pow [parent=Global]

Lambda Expressions

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)
16

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function

Lambda expressions are not common in Python, but important in general

Important: No "return" keyword!

Must be a single expression

16

Lambda expressions in Python cannot contain statements at all!

Check Your Understanding: Calling Lambda

17

.

Environments for Higher-Order Functions

Environments Enable Higher-Order Functions

19

Environment diagrams describe how higher-order functions work!

Functions are first-class: Functions are values in our programming language

Higher-order function: A function that takes a function as an argument value or
 A function that returns a function as a return value

Revisiting Evaluation Order

20

• Even with higher-order function, the rules remain the same and the environment diagram
reflects Python evaluation order!

• Evaluate the operator, then the operands, finally apply the operator to the operands

make_adder(3)(5)

.

func make_adder(n) [parent=Global]

func adder(k) [parent=f1]

f1: make_adder [parent=Global]
f2: adder [parent=f1]

8func adder(k) [p=f1]

(Demo)

Currying

Function Currying

def make_adder(n):
 return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5

There's a general
relationship between

these functions

Curry: Transform a multi-argument function into a single-argument, higher-order function

22

(Demo)

Summary

23

• Using environment diagrams to visualize and understand programming

• Diagramming follow the evaluation procedure for Python

• Think deeply about how the code you write actually works

• Lambda expressions

• Similar to user-defined functions but are anonymous

• They are simple and can be created for one-time use or stored by assigning it to a
variable

• The same rules of diagramming apply to HOFs, which take in a function as an input to
return a function as an output

• To curry a multi-argument function is to transform it into a single-argument, multi-
nested HOF

