
Functions

Announcements

• Sign up for a lab and discussion section here, they are happening this week
• We will be making up Monday’s lecture on Friday. Info will be on Ed ASAP
• Lab 0 released, due Thursday (this includes the submission and assessment, two separate
Gradescope assignments)

• No Homework this week
• Lecture recordings will be up on bCourses first (before the website)
• Ask lecture (live and recorded) questions in the Ed thread!

2

http://sections.cs61a.org/

Tips for Success in CS 61A

• According to the course guide, expect to spend about 21.5 hours a week on CS 61A
• Sometimes more, sometimes less; YMMV

• Utilize all of your resources!
• OH, Instructor OH, Lab, Discussion, tutoring, etc.

• Ask for help and collaborate (when allowed)

• Start early

• Practice Practice Practice (and did I mention, practice?)
• Intuition based topics, not memorization

3

https://classes.berkeley.edu/content/2023-summer-compsci-61a-001-lec-001

Expressions

18 + 69
6

23

p
3493161

sin⇡

f(x)
100X

i=1

i

|� 1869|

✓
69

18

◆

2100

log2 1024

7 mod 2 lim
x!1

1

x

Types of expressions

5

An expression describes a computation and evaluates to a value

Call Expressions in Python

All expressions can use function call notation

(Demo)

6

Anatomy of a Call Expression

7

Evaluation procedure for call expressions:

add (2 , 3)

Operator Operand Operand

Operators and operands are also expressions

1. Evaluate the operator and then the operand subexpressions

2. Apply the function that is the value of the operator

to the arguments that are the values of the operands

So they evaluate to values

224
mul(add(4, mul(4, 6)), add(3, 5))

add(4, mul(4, 6))

Evaluating Nested Expressions

8

28mul

add 4

mul(4, 6)

mul 4 6

24

add(3, 5)

add 3 5

8

224
mul(add(4, mul(4, 6)), add(3, 5))

add(4, mul(4, 6))
28mul

add 4

mul(4, 6)

mul 4 6

24

add(3, 5)

add 3 5

8

Evaluating Nested Expressions

9

Expression tree

Operand subexpression

1st argument to mul

Value of the whole expression

Value of subexpression

Names, Assignment, and User-Defined Functions

(Demo)

Types of Expressions

Primitive expressions:

Call expressions:

2 add 'hello'

max (2 , 3)

Operator Operand Operand

max(min(pow(3, 5), -4), min(1, -2))

Number or Numeral Name String

11

An operand can also
be a call expression

Discussion Question 1

What is the value of the final expression in this sequence?

>>> f = min

>>> f = max

>>> g, h = min, max

>>> max = g

>>> max(f(2, g(h(1, 5), 3)), 4)

???

12

Environment Diagrams

Environment Diagrams

(Demo)

Name Value

Import statement

Each name is bound to a value

Within a frame, a name cannot be repeated

Statements and expressions

Arrows indicate evaluation order

Frames (right):Code (left):

Environment diagrams visualize the interpreter’s process.

14

Just executed

Next to execute Assignment statement

http://pythontutor.com/composingprograms.html#code=from%20math%20import%20pi%0Atau%20%3D%202%20*%20pi&cumulative=false&curInstr=1&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Assignment Statements

Execution rule for assignment statements:

1. Evaluate all expressions to the right of = from left to right.

2. Bind all names to the left of = to those resulting values in the current frame.

15

Just executed

Just executed

Next to execute

http://pythontutor.com/composingprograms.html#code=a%20%3D%201%0Ab%20%3D%202%0Ab,%20a%20%3D%20a%20%2B%20b,%20b&cumulative=false&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Discussion Question 1 Solution

16

func min(...) 4

3

f(2, g(h(1, 5), 3))
3

g(h(1, 5), 3)
3 func max(...) 2

3
h(1, 5)

func min(...) 5

5 func max(...) 1

3
http://pythontutor.com/composingprograms.html#code=f%20%3D%20min%0Af%20%3D%20max%0Ag,%20h%20%3D%20min,%20max%0Amax%20%3D%20g%0Amax%28f%282,%20g%28h%281,%205%29,%203%29%29,%204%29&cumulative=false&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Global frame

f

func min(...)

func max(...)

max

h

g

Break

Defining Functions

Functions

Assignment is a simple means of abstraction: binds names to values

Function definition is a more powerful means of abstraction: binds names to expressions

A function is a sequence of code that perform a particular task and can be reused easily

Using functions lets us abstract away sequences of computation

They take in some input (known as their arguments) and transform it into an output (the
return value)

We can create functions using def statements. Their input is given in a function call, and
their output is given by a return statement.

19

5 Square 25

Defining Functions

Assignment is a simple means of abstraction: binds names to values

Function definition is a more powerful means of abstraction: binds names to expressions

<name>(<formal parameters>):

return <return expression>

>>> def

Execution procedure for def statements:

1. Create a function with signature <name>(<formal parameters>)

2. Set the body of that function to be everything indented after the first line

3. Bind <name> to that function in the current frame

Function signature indicates how many arguments a function takes

Function body defines the computation performed when the function is applied

20

Return Values

The return keyword returns a value to whoever calls the functions and then exits the
function

Because the function is exited at the return, any code that comes after is not run
Forgetting a return is really easy to do, but forgetting it will lead to no value being
returned by your function

21

Common Function Mistakes

22

def add(x , y):

return sum

sum = x + y  

Code after the return is not being run. The final line should go before
the return

def add(num1 , num2):

sum = x + y
The function takes in num1, num2 but the function body uses x, y.
Also, there is no return

def add():

sum = x + y

return sum

The function is using variables that don’t seem to exist. They
should probably be parameters for the function.

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

Local frame

Original name of
function called

Formal parameter
bound to argument Return value

(not a binding!)

Built-in function

User-defined
function

23
http://pythontutor.com/composingprograms.html#code=from%20operator%20import%20mul%0Adef%20square%28x%29%3A%0A%20%20%20%20return%20mul%28x,%20x%29%0Asquare%28-2%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Calling User-Defined Functions

A function’s signature has all the
information needed to create a local frame

24

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

http://pythontutor.com/composingprograms.html#code=from%20operator%20import%20mul%0Adef%20square%28x%29%3A%0A%20%20%20%20return%20mul%28x,%20x%29%0Asquare%28-2%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Looking Up Names In Environments

Every expression is evaluated in the context of an environment.

So far, the current environment is either:

• The global frame alone, or

• A local frame, followed by the global frame.

Most important two things I’ll say all day:

An environment is a sequence of frames.

A name evaluates to the value bound to that name in the earliest frame of the current
environment in which that name is found.

E.g., to look up some name in the body of the square function:

• Look for that name in the local frame.

• If not found, look for it in the global frame.
(Built-in names like “max” are in the global frame too,
 but we don’t draw them in environment diagrams.)

(Demo)
25

https://pythontutor.com/cp/composingprograms.html#code=from%20operator%20import%20mul%0Adef%20square%28square%29%3A%0A%20%20%20%20return%20mul%28square,%20square%29%0Asquare%28-2%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Summary

• Programs consist of statements, or instructions for the computer, containing expressions,
which describe computation and evaluate to values.

• Values can be assigned to names to avoid repeating computations.
• An assignment statement assigns the value of an expression to a name in the current
environment.

• Functions encapsulate a series of statements that maps arguments to a return value.
• A def statement creates a function object with certain parameters and a body and binds it
to a name in the current environment.

• A call expression applies the value of its operator, a function, to the value(s) or its
operand(s), some arguments.

26

