
CS61A Lecture #39: Cryptography

Announcements:

• Homework 13 is up: due Monday.

• “Homework” 14 will be judging the contest.

• HKN surveys on Friday: 7.5 bonus points for filling out their survey
on Friday (yes, that means you have to come to lecture).

Last modified: Wed Apr 25 16:01:59 2012 CS61A: Lecture #39 1

Cryptography: Purposes

• Source: Ross Anderson, Security Engineering.

• Cryptography—the study of the design of ciphers—is a tool used to
help meet several goals, among them:

– Privacy: others can’t read our messages.

– Integrity: others can’t change our messages without us knowing.

– Authentication: we know whom we’re talking to.

• Some common terminology: we convert from plaintext to ciphertext
(encryption) and back (decryption).

• Although we typically think of text messages as characters, our al-
gorithms generally process streams of numbers or bits, making use
of standard encodings of characters as numbers.

Last modified: Wed Apr 25 16:01:59 2012 CS61A: Lecture #39 2

Substitution

• Simplest scheme is just to permute the alphabet:

 abcdefghijklmnopqrstuvwxyz

tyler duniabcfghjkmopqsvwxz

• So that

“so long and thanks for all the fish” =>
“ohtchgutygrtpnygbotdhmtycctpn tdion”

• Problem: If we intercept ciphertext for which we know the plain-
text (e.g., we know a message ends with name of the sender), we
learn part of the code.

• Even if we have only ciphertext, we can guess encoding from letter
frequencies.

Last modified: Wed Apr 25 16:01:59 2012 CS61A: Lecture #39 3

Stream Ciphers

• Idea: Use a different encoding for each character position. Enigma
was one example.

• Extreme case is the One-Time Pad: Receiver and sender share ran-
dom key sequence at least as long as all data sent. Each character
of the key specifies an unpredictable substitution cipher.

• Example:

Messages: attack at dawn|oops cancel that order|attack is back on

Key: vnchkjskruwisn|tjcdktjdjsahtjkdhjrizn|akjqltpotpfhsdjrsqieha...

Cipher: vfvhmtrkjtzin |gxrvjvjqlwlglqkwgxhlcd|acbqncowkoghuniee

(key of ’z’ means ’a’ 7→ ’z’, ’b’ 7→ ’ ’, ’c’ 7→ ’a’, etc.)

• Unbreakable, but requires lots of shared key information.

• Integrity problems: If I know message is “Pay to Paul N. Hilfinger
$100.00” can alter it to “Pay to Paul N. Hilfinger $999.00” [How?]

Last modified: Wed Apr 25 16:01:59 2012 CS61A: Lecture #39 4

Aside: A Simple Reversible Combination

• The cipher in the last slide essentially used addition modulo alphabet
size as the way to combine plaintext with a key.

• Usually, we use a different method of combining streams: exclusive
or (xor), which is the “not equal” operations on bits, defined on indi-
vidual bits by x ⊕ y = 0 if x and y are the same, else 1.
Fact: x ⊕ y ⊕ x = y. So, 01100011 ⊕ 10110101 = 11010110;
11010110 ⊕ 10110101 = 01100011.

Last modified: Wed Apr 25 16:01:59 2012 CS61A: Lecture #39 5

Using Random-Number Generators

• Python provides a pseudo-random number generator (used for the
Pig project, e.g.): from an initial value, produces any number of
“random-looking” numbers.

• Consider a function that creates pseudo-random number generators
that produce bits, e.g.:

import random

def bit_stream(seed):

r = random.Random(seed)

return lambda: r.getrandbits(1)

• If two sides of a conversation share the same key to use as a seed,
can create the same approximation to a one-time pad, and thus com-
municate secretly.

• Advantage: key can be much shorter than total amount of data.

• Disadvantage: stream of bits isn’t really random; may be subject to
clever attack (cryptanalysis).

• Very common technique: used in SSL (Secure Socket Layer) for
“secure” web communications.

Last modified: Wed Apr 25 16:01:59 2012 CS61A: Lecture #39 6

Block Ciphers

• So far, have encoded bit-by-bit (or byte-by-byte). Another ap-
proach is to map blocks of bits at a time, allowing them to be mixed
and swapped as well as scrambled.

• Feistel Ciphers: a strategy for generating block ciphers. Break mes-
sage into 2N-bit chunks, and break each chunk into N-bit left and
right halves. Then, put the result through a number of rounds:

Bits N ..2N − 1Bits 0..N − 1

f1

f2

f3

etc.

– Each fi is a “random function” on N-bit
blocks chosen by your key.

– fi does not have to be invertible.

– Nice feature: to decrypt, run back-
wards.

– If the fi are really chosen randomly
enough, these are very good ciphers
with 4 or more rounds.

• The Data Encryption Standard (DES) uses this strategy with 12 rounds.

Last modified: Wed Apr 25 16:01:59 2012 CS61A: Lecture #39 7

Chaining

• It’s possible to abuse a good cipher, making messages vulnerable.

• If you simply break a message into pieces and then encrypt each
piece, an eavesdropper (traditionally named Eve) can tell that two
messages you send are the same, even if she doesn’t know what the
messages are.

• E.g., in advance of the Battle of Midway (WWII), the Allies de-
termined that the target of the Japanese operation was, in fact,
Midway by arranging to have the Japanese intercept and retransmit
in coded form a message containing the word “Midway.” This allowed
them to determine what island other encoded Japanese communica-
tions were referring to.

• Fix: make every encryption of the same text different using various
techniques:

– Add salt: Intersperse random bits at predetermined locations
(ignored on decryption).

– Chaining: before encrypting a block, xor it with the encoding of
the previous block. Start the process off with a throw-away ran-
dom block.

Last modified: Wed Apr 25 16:01:59 2012 CS61A: Lecture #39 8

Public Key Cryptography

• So far, our ciphers have been symmetric: both sides of a conversa-
tion share the same secret information (a key).

• If I haven’t contacted someone before, how can we trade secret
keys so as to use one of these methods?

• One idea is to use public keys so that everyone knows enough to
communicate with us, but not enough to listen in.

• Here, information is asymmetric: we publish a public key that ev-
eryone can know, and keep back a private key.

• Rely on it being easy to decipher messages knowing the private key,
but impractically difficult without it.

• Unfortunately, we haven’t actually proved that any of these public-
key systems really are essentially impractical to crack, and quantum
computing (if made to work at scale) would break the most common
one.

• But for now, all is well.

Last modified: Wed Apr 25 16:01:59 2012 CS61A: Lecture #39 9

Example: Diffie-Hellman key exchange

• Assume that everyone has agreed ahead of time about a large public
prime number p and another number g < p.

• Every person, Y , now chooses a secret number, sy, and publishes the
value KY = gSY mod p next to his name.

• If A (Alice) wants to communicate with B (Bob), she can look up
Bob’s published number, Kb, and use (Kb)

sa mod p as the encrypting
key.

• Bob, seeing a message from Alice, computes (Ka)
sb mod p.

• But Ksa
b ≡ (gsb)sa ≡ gsb·sa ≡ (gsa)sb ≡ (Ka)

sb mod p, so both Bob and
Alice have the same key!

• Nobody else knows this key, because of the difficulty of finding x

such that px = y mod p.

Last modified: Wed Apr 25 16:01:59 2012 CS61A: Lecture #39 10

Other Public-Key Methods

• General idea with public-key methods is that everyone publishes a
public key, Kp, while retaining a secret private key, Ks.

• Typically these keys are very large numbers (hundreds of bits).

• A common method, RSA encryption, uses a public key consisting of
the product pq of two large prime numbers and a value e that has no
factors in common with p − 1 and q − 1. The private key is the two
numbers p and q.

• It is very hard to compute p and q from the product pq.

• To encrypt message M , compute C = M e mod pq.

• It is very hard to compute M from C unless you know p and q (not
just pq). But it is “easy” (with a computer) if you do know them.

• The method uses Euler’s generalization of Fermat’s (Little) Theo-
rem, but we’ll let you wait until the CS170 series to find out how
[plug].

Last modified: Wed Apr 25 16:01:59 2012 CS61A: Lecture #39 11

Signatures

• Suppose I receive a message, M , that supposedly comes from you.
How do I know it does?

• Using public-key methods, this is relatively easy.

• One approach (no details here) is that you first compute a condensa-
tion of M , h(M), where it is very hard to find another message, M ′

such that h(M) = h(M ′) and h(M) is a (big) integer in some limited
range (say 128 bits).

• Now append to your message a value S = f(h(M), Ks), where f is a
“signing function”.

• We choose f so that it has the property that there is an easily
computed function f ′ such that f ′(S,Kp) = h(M).

• So I, by computing h(M) and comparing it to f ′(S,Kp), can tell whether
you signed the message.

Last modified: Wed Apr 25 16:01:59 2012 CS61A: Lecture #39 12

Special Effects: Playing Cards Over the Phone?

• How do I play a card game over the phone, so that neither side can
(undetectably) cheat?

• To keep it simple, assume we have a two-person game between Alice
and Bob where all cards get revealed.

• For each game, let each side choose a secret encryption key, and
assume an algorithm that is commutative: if a message is encrypted
by secret key A and then by key B, it can be decrypted by the two
keys in either order.

Last modified: Wed Apr 25 16:01:59 2012 CS61A: Lecture #39 13

Playing Cards Over the Phone: Method

• Alice shuffles and encrypts a deck of cards, and sends them to Bob.

• Bob encrypts the encrypted cards, shuffles them, and sends them
back to Alice (doubly encrypted).

• Alice deals cards to Bob by selecting and decrypting them, and send-
ing them to Bob, who can decrypt them.

• Alice deals cards to herself by sending them to Bob, having him
decrypt them and send them (now singly encrypted) back to Alice.

• At the end of the game, all information can be revealed, and both
sides can check for consistency.

Last modified: Wed Apr 25 16:01:59 2012 CS61A: Lecture #39 14

	CS61A Lecture #39: Cryptography
	Cryptography: Purposes
	Substitution
	Stream Ciphers
	Aside: A Simple Reversible Combination
	Using Random-Number Generators
	Block Ciphers
	Chaining
	Public Key Cryptography
	Example: Diffie-Hellman key exchange
	Other Public-Key Methods
	Signatures
	Special Effects: Playing Cards Over the Phone?
	Playing Cards Over the Phone: Method

