
Lecture #26: The Scheme Language

Scheme is a dialect of Lisp:

• “The only programming language that is beautiful.”
—Neal Stephenson

• “The greatest single programming language ever designed”
—Alan Kay

Last modified: Wed Mar 21 13:04:48 2012 CS61A: Lecture #26 1

Scheme Background

• Invented in the 1970s by Guy Steele (“The Great Quux”), whose has
also participated in the development of Emacs, Java, and Common
Lisp.

• Designed to simplify and clean up certain irregularities in Lisp di-
alects at the time.

• Used in a fast Lisp compiler (Rabbit).

• Still maintained by a standards committee (although both Brian Har-
vey and I agree that recent versions have accumulated an unfortu-
nate layer of cruft).

Last modified: Wed Mar 21 13:04:48 2012 CS61A: Lecture #26 2

Data Types

• We divide Scheme data into atoms and pairs.

• The classical atoms:

– Numbers: integer, floating-point, complex, rational.

– Symbols.

– Booleans: #t, #f.

– The empty list: ().

– Procedures (functions).

• Some newer-fangled, mutable atoms:

– Vectors: Python lists.

– Strings.

– Characters: Like Python 1-element strings.

• Pairs are two-element tuples, where the elements are (recursively)
Scheme values.

Last modified: Wed Mar 21 13:04:48 2012 CS61A: Lecture #26 3

Symbols

• Lisp was originally designed to manipulate symbolic data: e.g., for-
mulae as opposed merely to numbers.

• Such data is typically recursively defined (e.g., “an expression con-
sists of an operator and subexpressions”).

• The “base cases” had to include numbers, but also variables or words.

• For this purpose, Lisp introduced the notion of a symbol:

– Essentially a constant string.

– Two symbols with the same “spelling” (string) are always the same
object.

– Confusingly, the reader (the program that reads in Scheme pro-
grams and data) converts symbols it reads into lower-case first.

• The main operation on symbols, therefore, is equality.

Last modified: Wed Mar 21 13:04:48 2012 CS61A: Lecture #26 4

Pairs and Lists

• As we’ve seen, one can build practically any data structure out of
pairs.

• The Scheme notation for the pair of values V1 and V2 is

(V1 . V2)

• In Scheme, the main one is the list, defined recursively like an rlist:

– The empty list, written “()”, is a list.

– The pair consisting of a value V and a list L is a list that starts
with V , and whose tail is L.

• Lists are so prevalent that there is a standard abbreviation: You can
write (V . ()) as (V), and (V1 . (V2 . (V3 ...))) as (V1 V2 V3 . . .)).

Last modified: Wed Mar 21 13:04:48 2012 CS61A: Lecture #26 5

Programs

• Scheme expressions programs are instances of Lisp data structures
(“Scheme is written in Scheme”).

• At the bottom, numerals, booleans, characters, and strings are ex-
pressions that stand for themselves.

• Most lists stand for function calls:

(OP E1 · · · En)

as a Scheme expression means “evaluate OP and the E1 (recursively),
and then apply the value of OP, which must be a function, to the
values of the arguments Ei.”

• A few lists, identified by their OP, are special forms, which each
have different meanings.

Last modified: Wed Mar 21 13:04:48 2012 CS61A: Lecture #26 6

Quotation

• Since programs are data, we have a problem: suppose you want your
program to create a piece of data that happens to look like a pro-
gram?

• How do we say, for example, “Set the variable x to the three-
element list (+ 1 2)” without it meaning “Set the variable x to the
value 3?”

• The “quote” special form does this: evaluating (quote E) yields E
itself as the value, without treating it like a Scheme expression to
be evaluated.

>>> (+ 1 2)

3

>>> (quote (+ 1 2))

(+ 1 2)

>>> ’(+ 1 2) ; Shorthand. Converted to (quote (+ 1 2))

(+ 1 2)

• How about

>>> (quote (1 2 ’(3 4))) ;?
Last modified: Wed Mar 21 13:04:48 2012 CS61A: Lecture #26 7

Symbols

• When evaluated as a program, a symbol acts like a variable name.

• Variables are bound in environments, just as in Python, although the
syntax differs.

• To define a new symbol, either use it as a parameter name (later),
or use the “define” special form:

(define pi 3.1415926)

(define pi**2 (* pi pi))

• This (re)defines the symbols in the current environment. The sec-
ond expression is evaluated first.

• To assign a new value to an existing binding, use the set! special
form:

(set! pi 3)

• Here, pi must be defined, and it is that definition that is changed
(not like Python).

Last modified: Wed Mar 21 13:04:48 2012 CS61A: Lecture #26 8

Function Evaluation

• Function evaluation is just like Python: same environment frames,
same rules for what it means to call a user-defined function.

• To create a new function, we use the lambda special form:

>>> ((lambda (x y) (+ (* x x) (* y y))) 3 4)

25

>>> (define fib

(lambda (n) (if (< n 2) n (+ (fib (- n 2) (- n 1))))))

>>> (fib 5)

5

• The last is so common, there’s an abbreviation:

>>> (define (fib n)

(if (< n 2) n (+ (fib (- n 2) (- n 1)))))

Last modified: Wed Mar 21 13:04:48 2012 CS61A: Lecture #26 9

Numbers

• All the usual numeric operations and comparisons:

>>> (- (quotient (* (+ 3 7 10) (- 1000 8)) 992) 17)

3

>>> (> 7 2)

#t

>>> (< 2 4 8)

#t

>>> (= 3 (+ 1 2) (- 4 1))

#t

>>> (integer? 5)

#t

>>> (integer? ’a)

#f

Last modified: Wed Mar 21 13:04:48 2012 CS61A: Lecture #26 10

Lists and Pairs

• Pairs (and therefore lists) have a basic constructor and accessors:

>>> (cons 1 2)

(1 . 2)

>>> (cons ’a (cons ’b ’()))

(1 2)

>>> (define L (a b c))

>>> (car L)

a

>>> (cdr L)

(b c)

>>> (cadr L) ; (car (cdr L))

b

>>> (cdddr L) ; (cdr (cdr (cdr L)))

()

• And one that is especially for lists:

>>> (list (+ 1 2) ’a 4)

(3 a 4)

>>> ; Why not just write ((+ 1 2) a 4)?

Last modified: Wed Mar 21 13:04:48 2012 CS61A: Lecture #26 11

Conditionals

• The basic control structures are the conditional, which are special
forms:

>>> (define x 14)

>>> (define n 2)

>>> (if (not (zero? n)) ; Condition

... (quotient x n) ; If condition is not #f

... x) ; If condition is #f

7

>>> (and (< 2 3) (> 3 4))

#f

>>> (and (< 2 3) ’())

()

>>> (or (< 2 3) (> 3 4))

#t

>>> (or (< 3 2) ’())

()

Last modified: Wed Mar 21 13:04:48 2012 CS61A: Lecture #26 12

Traditional Conditionals

Traditional Lisp had a more elaborate special form:

>>> (define x 5)

>>> (cond ((< x 1) ’small)

... ((< x 3) ’medium)

... ((< x 5) ’large)

... (else ’big))

big

Last modified: Wed Mar 21 13:04:48 2012 CS61A: Lecture #26 13

Binding Constructs: Let

• Sometimes, you’d like to introduce local variables or named con-
stants.

• The let special form does this:

>>> (define x 17)

>>> (let ((x 5)

... (y (+ x 2)))

... (+ x y))

24

• This is a derived form, equivalent to:

>>> ((lambda (x y) (+ x y) x (+ x 2)))

Last modified: Wed Mar 21 13:04:48 2012 CS61A: Lecture #26 14

Tail recursion

• With just the functions and special forms so far, can write anything.

• But there is one problem: how to get an arbitrary iteration that
doesn’t overflow the execution stack because recursion gets too
deep?

• Scheme mandates that tail-recursive functions must work like iter-
ations.

• This means that in this program:

(define (fib n)

(define (fib1 n1 n2 n)

(if (< n 2)

n2

(fib1 n2 (+ n1 n2) (- n 1))))

(if (= n 0) 0

(fib1 0 1 n)))

• Instead of calling fib1 recursively, we replace the call on fib1 with
the recursive call.

Last modified: Wed Mar 21 13:04:48 2012 CS61A: Lecture #26 15

	Lecture #26: The Scheme Language
	Scheme Background
	Data Types
	Symbols
	Pairs and Lists
	Programs
	Quotation
	Symbols
	Function Evaluation
	Numbers
	Lists and Pairs
	Conditionals
	Traditional Conditionals
	Binding Constructs: Let
	Tail recursion

