Lecture #24: Programming Languages and Programs

e A programming language, is a notation for describing computations
or processes.

e These range from low-level notations, such as machine language or
simple hardware description languages, where the subject matter is
typically finite bit sequences and primitive operations on them that
correspond directly to machine instructions or gates, ...

e ... To high-level notations, such as Python, in which the subject mat-
ter can be objects and operations of arbitrary complexity.

e The universe of implementations of these languages is layered: Python
can be implemented in C, which in turn can be implemented in assem-
bly language, which in turn is implemented in machine language, which
in turn is implemented with gates.

Last modified: Wed Mar 14 15:54:55 2012 CS61A: Lecture #24 1



Metalinguistic Abstraction

e We've created abstractions of actions—functions—and of things—
classes.

e Metalinguistic abstraction refers to the creation of languages—
abstracting description. Programming languages are one example.

e Programming languages are effective: they can be implemented.

e These implementations interpret utterances in that language, per-
forming the described computation or controlling the described pro-
cess.

e The interpreter may be hardware (interpreting machine-language
programs) or software (a program called an interpreter), or (in-
creasingly common) both.

e To be implemented, though, the grammar and meaning of utterances
in the programming language must be defined precisely.

Last modified: Wed Mar 14 15:54:55 2012 CS61A: Lecture #24 2



A Sample Language: Calculator

e Source: John Denero.

e Prefix notation expression language for basic arithmetic Python-like
syntax, with more flexible built-in functions.

calc> add(1, 2, 3, 4)

10

calc> mul()

1

calc> sub(100, mul(7, add(8, div(-12, -3))))
16.0

calc> -(100, *(7, +(8, /(-12, -3))))

16.0

Last modified: Wed Mar 14 15:54:55 2012 CS61A: Lecture #24 3



Syntax and Semantics of Calculator

Expression types:

e A call expression is an operator name followed by a commaseparated
list of operand expressions, in parentheses

e A primitive expression is a number

Operators:
e The add (or + operator returns the sum of its arguments
e The sub (-) operator returns either

- the additive inverse of a single argument, or
- the sum of subsequent arguments subtracted from the first.

e The mul (*) operator returns the product of its arguments.

e The div (/) operator returns the real-valued quotient of a dividend
and divisor.

Last modified: Wed Mar 14 15:54:55 2012 CS61A: Lecture #24 4



Expression Trees (again)

e Our calculator program represents expressions as trees (see Lec-
ture #20).

e It consists of a parser, which produces expression trees from in-
put text, and an evaluator, which performs the computations repre-
sented by the trees.

e You can use the term "“interpreter” to refer to both, or to just the
evaluator.

e To create an expression tree:

class Exp(object):
"""A call expression in Calculator."""
def __init__(self, operator, operands):
self .operator = operator
self .operands = operands

Last modified: Wed Mar 14 15:54:55 2012 CS61A: Lecture #24 b5



Expression Trees By Hand

As usual, we have defined (in lect24.py) the methods __repr__ and
__str__ to produce reasonable representations of expression trees:

>>> Exp(’add’, [1, 2])

Exp(’add’, [1, 2])

>>> str(Exp(’add’, [1, 2]))

’add (1, 2)°

>>> Exp(’add’, [1, Exp(’mul’, [2, 3, 4])])
Exp(’add’, [1, Exp(C’mul’, [2, 3, 4])])

>>> str(Exp(’add’, [1, Exp(’mul’, [2, 3, 4]1)]))
’add (1, mul(2, 3, 4))°

Last modified: Wed Mar 14 15:54:55 2012 CS61A: Lecture #24 6



Evaluation

Evaluation discovers the form of an expression and then executes a
corresponding evaluation rule.

e Primitive expressions (literals) "evaluate to themselves”

e Call expressions are evaluated recursively, following the tree struc-
ture:

- Evaluate each operand expression, collecting values as a list of
arguments.

- Apply the named operator to the argument list.

def calc_eval(exp):
"""Evaluate a Calculator expression."""
if type(exp) in (int, float):
return exp
elif type(exp) == Exp:
arguments = list(map(calc_eval, exp.operands))
return calc_apply(exp.operator, arguments)

Last modified: Wed Mar 14 15:54:55 2012 CS61A: Lecture #24 7



Applying Operators

Calculator has a fixed set of operators that we can enumerate

def calc_apply(operator, args):
"""Apply the named operator to a list of args.

if operator in (’add’, ’+’):
return sum(args)
if operator in (’sub’, ’-’):

if len(args) == O:
raise TypeError(operator + ’requires at least 1 argument’)
if len(args) == 1:
return -args[0]
return sum(args[:1] + [-arg for arg in args[1:]1])
efc.

Last modified: Wed Mar 14 15:54:55 2012 CS61A: Lecture #24 8



Read-Eval-Print Loop

The user interface tfo many programming languages is an interactive
loop that

e Reads an expression from the user
e Parses the input to build an expression tree
e Evaluates the expression tree

e Prints the resulting value of the expression

def read_eval_print_loop():
"""Run a read-eval-print loop for calculator."""
while True:
try:
expression_tree = calc_parse(input(’calc> ’))
print (calc_eval (expression_tree))
except:
print error message and recover

Last modified: Wed Mar 14 15:54:55 2012 CS61A: Lecture #24 9



	Lecture #24: Programming Languages and Programs
	Metalinguistic Abstraction
	A Sample Language: Calculator
	Syntax and Semantics of Calculator
	Expression Trees (again)
	Expression Trees By Hand
	Evaluation
	Applying Operators
	Read-Eval-Print Loop

