
Lecture #22: Complexity and Orders of Growth

• Certain problems take longer than others to solve, or require more
storage space to hold intermediate results.

• We refer to the time complexity or space complexity of a problem.

• But what does it mean to say that a certain program has a particular
complexity?

• What does it mean for an algorithm?

• What does it mean for a problem?
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A Direct Approach

• Well, if you want to know how fast something is, you can time it.

• Python happens to make this easy:

>>> def fib(n):

... if n <= 1: return n

... else: return fib(n-2) + fib(n-1)

...

>>> import timeit

>>> timeit.repeat(’fib(10)’, ’from __main__ import fib’, number=5)

[0.0004911422729492188, 0.0004868507385253906, 0.0004870891571044922]

timeit.repeat(’fib(20)’, ’from __main__ import fib’, number=5)

[0.06009697914123535, 0.06010794639587402, 0.06009793281555176]

>>> timeit.repeat(’fib(20)’, ’from __main__ import fib’, number=5)

[0.06009697914123535, 0.06010794639587402, 0.06009793281555176]

• timeit.repeat(Stmt, Setup, number=N) says

Execute Setup (a string containing Python code), then execute
Stmt (a string) N times. Repeat this process 3 times and re-
port the time required for each repetition.
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A Direct Approach, Continued

• You can also use this from the command line:

...# python3 -m timeit --setup=’from fib import fib’ ’fib(10)’

10000 loops, best of 3: 97 usec per loop

• This command automatically chooses a number of executions of fib
to give a total time that is large enough for an accurate average,
repeats 3 times, and reports the best time.
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Strengths and Problems with Direct Approach

• Good: Gives actual times; answers question completely for given in-
put and machine.

• Bad: Results apply only to tested inputs.

• Bad: Results apply only to particular programs and platforms.

• Bad: Cannot tell us anything about complexity of algorithm or of
problem.
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But Can’t We Extrapolate?

• Why not try a succession of times, and use that to figure out timing
in general?

...# for t in 5 10 15 20 25 30; do

> echo -n "$t: "

> python3 -m timeit --setup=’from fib import fib’ "fib($t)"

> done

5: 100000 loops, best of 3: 8.16 usec per loop

10: 10000 loops, best of 3: 96.8 usec per loop

15: 1000 loops, best of 3: 1.08 msec per loop

20: 100 loops, best of 3: 12 msec per loop

25: 10 loops, best of 3: 133 msec per loop

30: 10 loops, best of 3: 1.47 sec per loop

• This looks to be exponential in t with exponent of ≈ 1.6.

• But. . . what if the program special-cases some inputs?

• . . . and this still only works for a particular program and machine.
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Worst Case, Average Case

• To avoid the problem of getting results only for particular inputs,
we usually ask a more general question, such as:

– What is the worst case time to compute f(X) as a function of the
size of X , or

– what is the average case time to compute f(X) over all values of
X (weighted by likelihood).

• Average case is hard, so we’ll let other courses deal with it.

• But now we seem to have a harder problem than before: how do we
get worst-case times? Doesn’t that require testing all cases?

• And when we do, aren’t we still sensitive to machine model, compiler,
etc.?
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Operation Counts and Scaling

• Instead of getting precise answers in units of physical time, we
therefore settle for a proxy measure that will remain meaningful
over changes in architecture or compiler.

• Choose some operation(s) of interest and count how many times they
occur.

• Examples:

– How many times does fib get called recursively during computa-
tion of fib(N)?

– How many addition operations get performed by fib(N)?

• You can no longer get precise times, but if the operations are well-
chosen, results are proportional to actual time for different values
of N .

• Thus, we look at how computation time scales in the worst case.

• Can compare programs/algorithms on the basis of which scale bet-
ter.
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Asymptotic Results

• Sometimes, results for “small” values are not indicative.

• E.g., suppose we have a prime-number tester that contains a look-up
table of the primes up to 1,000,000,000 (about 50 million primes).

• Tests for numbers up to 1 billion will be faster than for larger num-
bers.

• So in general, we tend to ask about asymptotic behavior of pro-
grams: as size of input goes to infinity.
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Expressing Approximation

• So, we are looking for measures of program performance that give
us a sense of how computation time scales with size of input.

• And we are further interested in ignoring finite sets of special cases
that a given program can compute quickly.

• Finally, precise worst-case functions can be very complicated, and
the precision is generally not terribly important anyway.

• These considerations motivate the use of order notation to express
approximations of execution time or space.
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The Notation

• Suppose that f is a function of one parameter returning real num-
bers.

• We use the notation O(f) to mean “the set of all one-parameter
functions whose absolute values are eventually bounded above by
some multiple of f ’s absolute value.” Formally:

O(f) = {g | there exist p,M such that if x > M , |g(x)| ≤ p|f(x)|}

• Similarly, we have “the set of all one-parameter functions whose
absolute values are eventually bounded below by some multiple of
f ’s absolute value:”

Ω(f) = {g | there exist p > 0,M such that if x > M , |g(x)| ≥ p|f(x)|}

• And finally those bounded both above and below:

Θ(f) = Ω(f) ∩ O(f)
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Illustration

2g(x)

g(x)

f(x)

M = 1

• Here, f ∈ O(g) (p = 2, see blue line), even though f(x) > g(x).
Likewise, f ∈ Ω(g) (p = 1, see red line), and therefore f ∈ Θ(g).

• That is, f(x) is eventually (for x > M = 1) no more than proportional
to g(x) and no less than proportional to g(x).
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Illustration, contd.

g(x)

0.5g(x)

f ′(x)

M = 1

• Here, f ′ ∈ Ω(g) (p = 0.5), even though g(x) > f ′(x) everywhere.
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Uses of the Notation

• You may have seen O(·) notation in math, where we say things like

f(x) ∈ f(0) + f ′(0)x +
f ′′(0)

2
x2 + O(f ′′′(0)x3)

• Adding or multiplying sets of functions produces sets of functions.
The one above means “the set of all functions g(x) such that

g(x) = f(0) + f ′(0)x +
f ′′(0)

2
x2 + h(x)

where h(x) ∈ O(f ′′′(0)x3).”’

• I prefer ∈ to the traditional =, since the latter makes no formal
sense.
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