
Lecture #22: Complexity and Orders of Growth

• Certain problems take longer than others to solve, or require more
storage space to hold intermediate results.

• We refer to the time complexity or space complexity of a problem.

• But what does it mean to say that a certain program has a particular
complexity?

• What does it mean for an algorithm?

• What does it mean for a problem?

Last modified: Fri Mar 16 02:20:23 2012 CS61A: Lecture #22 1

A Direct Approach

• Well, if you want to know how fast something is, you can time it.

• Python happens to make this easy:

>>> def fib(n):

... if n <= 1: return n

... else: return fib(n-2) + fib(n-1)

...

>>> import timeit

>>> timeit.repeat(’fib(10)’, ’from __main__ import fib’, number=5)

[0.0004911422729492188, 0.0004868507385253906, 0.0004870891571044922]

timeit.repeat(’fib(20)’, ’from __main__ import fib’, number=5)

[0.06009697914123535, 0.06010794639587402, 0.06009793281555176]

>>> timeit.repeat(’fib(20)’, ’from __main__ import fib’, number=5)

[0.06009697914123535, 0.06010794639587402, 0.06009793281555176]

• timeit.repeat(Stmt, Setup, number=N) says

Execute Setup (a string containing Python code), then execute
Stmt (a string) N times. Repeat this process 3 times and re-
port the time required for each repetition.

Last modified: Fri Mar 16 02:20:23 2012 CS61A: Lecture #22 2

A Direct Approach, Continued

• You can also use this from the command line:

...# python3 -m timeit --setup=’from fib import fib’ ’fib(10)’

10000 loops, best of 3: 97 usec per loop

• This command automatically chooses a number of executions of fib
to give a total time that is large enough for an accurate average,
repeats 3 times, and reports the best time.

Last modified: Fri Mar 16 02:20:23 2012 CS61A: Lecture #22 3

Strengths and Problems with Direct Approach

• Good: Gives actual times; answers question completely for given in-
put and machine.

• Bad: Results apply only to tested inputs.

• Bad: Results apply only to particular programs and platforms.

• Bad: Cannot tell us anything about complexity of algorithm or of
problem.

Last modified: Fri Mar 16 02:20:23 2012 CS61A: Lecture #22 4

But Can’t We Extrapolate?

• Why not try a succession of times, and use that to figure out timing
in general?

...# for t in 5 10 15 20 25 30; do

> echo -n "$t: "

> python3 -m timeit --setup=’from fib import fib’ "fib($t)"

> done

5: 100000 loops, best of 3: 8.16 usec per loop

10: 10000 loops, best of 3: 96.8 usec per loop

15: 1000 loops, best of 3: 1.08 msec per loop

20: 100 loops, best of 3: 12 msec per loop

25: 10 loops, best of 3: 133 msec per loop

30: 10 loops, best of 3: 1.47 sec per loop

• This looks to be exponential in t with exponent of ≈ 1.6.

• But. . . what if the program special-cases some inputs?

• . . . and this still only works for a particular program and machine.

Last modified: Fri Mar 16 02:20:23 2012 CS61A: Lecture #22 5

Worst Case, Average Case

• To avoid the problem of getting results only for particular inputs,
we usually ask a more general question, such as:

– What is the worst case time to compute f(X) as a function of the
size of X , or

– what is the average case time to compute f(X) over all values of
X (weighted by likelihood).

• Average case is hard, so we’ll let other courses deal with it.

• But now we seem to have a harder problem than before: how do we
get worst-case times? Doesn’t that require testing all cases?

• And when we do, aren’t we still sensitive to machine model, compiler,
etc.?

Last modified: Fri Mar 16 02:20:23 2012 CS61A: Lecture #22 6

Operation Counts and Scaling

• Instead of getting precise answers in units of physical time, we
therefore settle for a proxy measure that will remain meaningful
over changes in architecture or compiler.

• Choose some operation(s) of interest and count how many times they
occur.

• Examples:

– How many times does fib get called recursively during computa-
tion of fib(N)?

– How many addition operations get performed by fib(N)?

• You can no longer get precise times, but if the operations are well-
chosen, results are proportional to actual time for different values
of N .

• Thus, we look at how computation time scales in the worst case.

• Can compare programs/algorithms on the basis of which scale bet-
ter.

Last modified: Fri Mar 16 02:20:23 2012 CS61A: Lecture #22 7

Asymptotic Results

• Sometimes, results for “small” values are not indicative.

• E.g., suppose we have a prime-number tester that contains a look-up
table of the primes up to 1,000,000,000 (about 50 million primes).

• Tests for numbers up to 1 billion will be faster than for larger num-
bers.

• So in general, we tend to ask about asymptotic behavior of pro-
grams: as size of input goes to infinity.

Last modified: Fri Mar 16 02:20:23 2012 CS61A: Lecture #22 8

Expressing Approximation

• So, we are looking for measures of program performance that give
us a sense of how computation time scales with size of input.

• And we are further interested in ignoring finite sets of special cases
that a given program can compute quickly.

• Finally, precise worst-case functions can be very complicated, and
the precision is generally not terribly important anyway.

• These considerations motivate the use of order notation to express
approximations of execution time or space.

Last modified: Fri Mar 16 02:20:23 2012 CS61A: Lecture #22 9

The Notation

• Suppose that f is a function of one parameter returning real num-
bers.

• We use the notation O(f) to mean “the set of all one-parameter
functions whose absolute values are eventually bounded above by
some multiple of f ’s absolute value.” Formally:

O(f) = {g | there exist p,M such that if x > M , |g(x)| ≤ p|f(x)|}

• Similarly, we have “the set of all one-parameter functions whose
absolute values are eventually bounded below by some multiple of
f ’s absolute value:”

Ω(f) = {g | there exist p > 0,M such that if x > M , |g(x)| ≥ p|f(x)|}

• And finally those bounded both above and below:

Θ(f) = Ω(f) ∩ O(f)

Last modified: Fri Mar 16 02:20:23 2012 CS61A: Lecture #22 10

Illustration

2g(x)

g(x)

f(x)

M = 1

• Here, f ∈ O(g) (p = 2, see blue line), even though f(x) > g(x).
Likewise, f ∈ Ω(g) (p = 1, see red line), and therefore f ∈ Θ(g).

• That is, f(x) is eventually (for x > M = 1) no more than proportional
to g(x) and no less than proportional to g(x).

Last modified: Fri Mar 16 02:20:23 2012 CS61A: Lecture #22 11

Illustration, contd.

g(x)

0.5g(x)

f ′(x)

M = 1

• Here, f ′ ∈ Ω(g) (p = 0.5), even though g(x) > f ′(x) everywhere.

Last modified: Fri Mar 16 02:20:23 2012 CS61A: Lecture #22 12

Uses of the Notation

• You may have seen O(·) notation in math, where we say things like

f(x) ∈ f(0) + f ′(0)x +
f ′′(0)

2
x2 + O(f ′′′(0)x3)

• Adding or multiplying sets of functions produces sets of functions.
The one above means “the set of all functions g(x) such that

g(x) = f(0) + f ′(0)x +
f ′′(0)

2
x2 + h(x)

where h(x) ∈ O(f ′′′(0)x3).”’

• I prefer ∈ to the traditional =, since the latter makes no formal
sense.

Last modified: Fri Mar 16 02:20:23 2012 CS61A: Lecture #22 13

	Lecture #22: Complexity and Orders of Growth
	A Direct Approach
	A Direct Approach, Continued
	Strengths and Problems with Direct Approach
	But Can't We Extrapolate?
	Worst Case, Average Case
	Operation Counts and Scaling
	Asymptotic Results
	Expressing Approximation
	The Notation
	Illustration
	Illustration, contd.
	Uses of the Notation

