
Lecture #21: Tree Structures

Last modified: Wed Mar 7 18:27:33 2012 CS61A: Lecture #21 1

A General Tree Type

• Trees don’t quite lend themselves to being captured with standard
syntax like tuples or lists, because they get accessed in various
ways, with slightly varying interfaces.

• For the purposes of this lecture, we’ll use this type, which has no
empty trees:

class Tree:

"""A Tree consists of a label and a sequence

of 0 or more Trees, called its children."""

def __init__(self, label, *children):

"""A Tree with given label and children.

For convenience, if children[k] is not a Tree,

it is converted into a leaf whose operator is

children[k]."""

self.__label = label;

self.__children = \

[c if type(c) is Tree else Tree(c)

for c in children]

Last modified: Wed Mar 7 18:27:33 2012 CS61A: Lecture #21 2

A General Tree Type: Accessors

class Tree:

@property

def is_leaf(self):

return self.arity == 0

@property

def label(self):

return self.__label

@property

def arity(self):

"""The number of my children."""

return len(self.__children)

def __iter__(self):

"""An iterator over my children."""

return iter(self.__children)

def __getitem__(self, k):

"""My kth child."""

return self.__children[k]

Last modified: Wed Mar 7 18:27:33 2012 CS61A: Lecture #21 3

A Simple Recursion

• Since trees are recursively defined, recursion generally figures in
algorithms on them.

• Example: number of leaf nodes.

def leaf_count(T):

"""Number of leaf nodes in the Tree T."""

if T.is_leaf:

return 1

else:

s = 0

for child in T:

s += leaf_count(child)

return s

Can you put the else clause in one line instead?

return ?

• How long does this take (for a tree with N leaves)?

Last modified: Wed Mar 7 18:27:33 2012 CS61A: Lecture #21 4

A Search

• This particular definition of trees lends itself to Noetherian induc-
tion with no explicit base case.

def tree_contains(T, x):

"""True iff x is a label in T."""

Last modified: Wed Mar 7 18:27:33 2012 CS61A: Lecture #21 5

Tree to List

• Another example with no explicit base cases:

def tree_to_list_preorder(T):

"""The list of all labels in T, listing the labels

of trees before those of their children, and listing their

children left to right (preorder)."""

Last modified: Wed Mar 7 18:27:33 2012 CS61A: Lecture #21 6

Ordered Trees

• The book talks about search trees as implementations of sets of
values.

• Here, the purpose of the tree is to divide data into smaller parts.

• In a binary search tree, each node is either empty or has two chil-
dren that are binary search trees such that all labels in the first
(left) child are less than the node’s label and all labels in the second
(right) child are greater.

10

5

2 7

15

20

17

Last modified: Wed Mar 7 18:27:33 2012 CS61A: Lecture #21 7

Tree Search Program

def tree_find(T, x):

"""True iff x is a label in set T, represented as a search tree.

That is, T

(a) Represents an empty tree if its label is None, or

(b) has two children, both search trees, and all labels in

T[0] are less than T.label, and all labels in T[1] are

greater than T.label."""

Last modified: Wed Mar 7 18:27:33 2012 CS61A: Lecture #21 8

	Lecture #21: Tree Structures
	A General Tree Type
	A General Tree Type: Accessors
	A Simple Recursion
	A Search
	Tree to List
	Ordered Trees
	Tree Search Program

