
Lecture #2: Functions, Expressions, Environments

• From last lecture: Values are data we want to manipulate and in
particular,

• Functions are values that perform computations on values.

• Expressions denote computations that produce values.

• Today, we’ll look at them in some detail at how functions operate on
data values and how expressions denote these operations.

• As usual, although our concrete examples all involve Python, the ac-
tual concepts apply almost universally to programming languages.

Last modified: Thu Mar 29 15:06:17 2012 CS61A: Lecture #2 1

Functions

• We’re going to use this notation to denote functions:

abs(number): add(left, right)

• The green parenthesized lists indicate the number of parameter
values or inputs the functions operate on (this information is also
known as a function’s signature).

• For our purposes, the blue name is simply a helpful comment to sug-
gest what the function does, and the specific (green) parameter
names are likewise just helpful hints.

• (Python actually maintains this intrinsic name and the parameter
names internally, but this is not a universal feature of programming
languages).

Last modified: Thu Mar 29 15:06:17 2012 CS61A: Lecture #2 2

Pure Functions

• The fundamental operation on function values is to call or invoke
them, which means giving them one value for each formal parameter
and having them produce the result of their computation on these
values:

abs(number):-5 ⊲

⊲ 5

add(left, right)(29, 13) ⊲

⊲ 42

• These two functions are pure: their output depends only on their
input parameters’ values, and they do nothing in response to a call
but compute a value.

Last modified: Thu Mar 29 15:06:17 2012 CS61A: Lecture #2 3

Impure Functions

• Functions may do additional things when called besides returning a
value.

• We call such things side effects.

• Example: the built-in print function:

print(• • •)-5 ⊲

⊲ None

display text ’-5’

• Displaying text is print’s side effect. It’s value, in fact, is generally
useless (always the null value).

Last modified: Thu Mar 29 15:06:17 2012 CS61A: Lecture #2 4

Call Expressions

• A call expression denotes the operation of calling a function.

• Consider add(2, 3):

add
︸ ︷︷ ︸

Operator
(2

︸ ︷︷ ︸

Operand 0
, 3

︸ ︷︷ ︸

Operand 1
)

• The operator and the operands are all themselves expressions (re-
cursion again).

• To evaluate this call expression:

– Evaluate the operator (let’s call the value C);

– Evaluate the operands in the order they appear (let’s call the
values P0 and P1)

– Call C (which must be a function) with parameters P0 and P1.

• Together with the definitions for base cases (mostly literal expres-
sions and symbolic names), this describes how to evaluate any call.

Last modified: Thu Mar 29 15:06:17 2012 CS61A: Lecture #2 5

Example: From Expression to Value

Let’s evaluate the expression mul(add(2, mul(0x4, 0x6)), add(0x3, 005)).
In the following sequence, values are shown in boxes .
Everything outside a box is an expression.

• mul
︸ ︷︷ ︸

(add
︸ ︷︷ ︸

(2
︸︷︷︸

,mul(0x4
︸ ︷︷ ︸

, 0x6
︸ ︷︷ ︸

)
︸ ︷︷ ︸

)
︸ ︷︷ ︸

, add(0x3
︸ ︷︷ ︸

, 005
︸ ︷︷ ︸

)
︸ ︷︷ ︸

)

• mul(left, right) (add(2, mul(0x4, 0x6)), add(0x3, 005))

• mul(left, right) (add(left, right) (2 , mul(left, right) (4 , 6)),

add(0x3, 005))

• mul(left, right) (add(left, right) (2 , 24), add(0x3, 005))

• mul(left, right) (26 , add(0x3, 005))

• mul(left, right) (26 , add(left, right) (3 , 5))

• mul(left, right) (26 , 8)

• 208 .

Last modified: Thu Mar 29 15:06:17 2012 CS61A: Lecture #2 6

Example: Print

What about an expression with side effects?

1. print(print(1), print(2))

2. print(• • •) (print(• • •) (1), print(2))

3. print(• • •) (None , print(2))

and print ‘1’.

4. print(• • •) (None , print(• • •) (2))

5. print(• • •) (None , None))

and print ‘2’.

6. None
and print ‘None None’.

Last modified: Thu Mar 29 15:06:17 2012 CS61A: Lecture #2 7

Names

• Evaluating expressions that are literals is easy: the literal’s text
gives all the information needed.

• But how did I evaluate names like add, mul, or print?

• Deduction: there must be another source of information.

• We’ll use the concept of an environment to explain this.

Last modified: Thu Mar 29 15:06:17 2012 CS61A: Lecture #2 8

Environments

• An environment is a mapping from names to values.

• We say that a name is bound to a value in this environment.

• In its simplest form, it consists of a single global environment frame:

abs:
. . .
pi: 3.1415926
. . .
radius: 10
. . .
square:

abs(x)

square(x)

return mul(x, x)

Pre-defined

Imported

Assigned
Assigned
by def

Last modified: Thu Mar 29 15:06:17 2012 CS61A: Lecture #2 9

Environments and Evaluation

• Every expression is evaluated in an environment, which supplies the
meanings of any names in it.

• Evaluating an expression typically involves first evaluating its subex-
pressions (the operators and operands of calls, the operands of con-
ventional expressions such as x*(y+z), . . .).

• These subexpressions are evaluated in the same environment as the
expression that contains them.

• Once their subexpressions (operator + operands) are evaluated, calls
to user-defined functions must evaluate the expressions and state-
ments from the definition of those functions.

Last modified: Thu Mar 29 15:06:17 2012 CS61A: Lecture #2 10

Evaluating User-Defined Function Calls

• Consider the expression square(mul(x, x)) after executing

from operator import mul

def square(x):

return mul(x,x)

x = -2

mul:
. . .
x: -2
. . .
square:

mul(L,R)

square(x)
return mul(x, x)

square(mul(x,x))

Evaluation
Environment

Expression
Evaluation

Last modified: Thu Mar 29 15:06:17 2012 CS61A: Lecture #2 11

Evaluating User-Defined Function Calls (II)

• First evaluate the subexpressions of square(mul(x, x)) in the global
environment:

mul:
. . .
x: -2
. . .
square:

mul(L,R)

square(x)

return mul(x, x)

square (mul (-2 , -2))

For short, just

mul and square

• Evaluating subexpressions x, mul, and square takes values from the
expression’s environment.

Last modified: Thu Mar 29 15:06:17 2012 CS61A: Lecture #2 12

Evaluating User-Defined Functions Calls (III)

• Then perform the primitive multiply function:

mul:
. . .
x: -2
. . .
square:

mul(L,R)

square(x)

return mul(x, x)

square (4)

Last modified: Thu Mar 29 15:06:17 2012 CS61A: Lecture #2 13

Evaluating User-Defined Functions Calls (IV)

• To explain parameter to user-defined square function, extend envi-
ronment with a local environment frame, attached to the frame in
which square was defined (the global one in this case), and giving x
the operand value.

• Now replace original call with evaluating body of square in the new
local environment.

mul:
. . .
x: -2
. . .
square:

x: 4

mul(L,R)

square(x)

return mul(x, x)
square (4)

mul(x, x)

Last modified: Thu Mar 29 15:06:17 2012 CS61A: Lecture #2 14

Evaluating User-Defined Functions Calls (V)

• When we evaluate mul(x, x) in this new environment, we get the same
value as before for mul, but the local value for x.

mul:
. . .
x: -2
. . .
square:

x: 4

mul(L,R)

square(x)

return mul(x, x)
square (4)

16

mul (4 , 4)

Last modified: Thu Mar 29 15:06:17 2012 CS61A: Lecture #2 15

	Lecture #2: Functions, Expressions, Environments
	Functions
	Pure Functions
	Impure Functions
	Call Expressions
	Example: From Expression to Value
	Example: Print
	Names
	Environments
	Environments and Evaluation
	Evaluating User-Defined Function Calls
	Evaluating User-Defined Function Calls (II)
	Evaluating User-Defined Functions Calls (III)
	Evaluating User-Defined Functions Calls (IV)
	Evaluating User-Defined Functions Calls (V)

