
Lecture #18: Recursion

Last modified: Fri Mar 2 01:24:14 2012 CS61A: Lecture #18 1



Subproblems and Self-Similarity

• Recursive routines arise when solving a problem naturally involves
solving smaller instances of the same problem.

• With rlists, this happened because an rlist contains a reference to
a smaller rlist: a recursive data structure.

• A classic example where the subproblems are visible is Sierpinski’s
Triangle (aka bit Sierpinski’s Gasket).

• This triangle may be formed by repeatedly replacing a figure, ini-
tially a solid triangle, with three quarter-sized images of itself (1/2
size in each dimension), arranged in a triangle:

Last modified: Fri Mar 2 01:24:14 2012 CS61A: Lecture #18 2



The Gasket in Python

• We can describe this as a recursive Python program (producing Postscript
output).

sin60 = sqrt(3) / 2

def make_triangle(x, y, s, n):

if n == 0:

print("{0} {1} moveto {2} 0 rlineto "

"-{3} {4} rlineto closepath fill"

.format(x, y, s, s/2, s*sin60))

else:

make_triangle(x, y, s/2, n - 1)

make_triangle(x + s/2, y, s/2, n - 1)

make_triangle(x + s/4, y + sin60*s/2, s/2, n-1)

print("%!")

make_triangle(100, 100, 400, 8)

Last modified: Fri Mar 2 01:24:14 2012 CS61A: Lecture #18 3



Aside: The Gasket in Postscript

• One can also perform the logic to generate figures in Postscript
directly, which is itself a full-fledged programming language:

%!

/sin60 3 sqrt 2 div def

/make_triangle {

dup 0 eq {

3 index 3 index moveto 1 index 0 rlineto 0 2 index rlineto

1 index neg 0 rlineto closepath fill

} {

3 index 3 index 3 index 0.5 mul 3 index 1 sub make_triangle

3 index 2 index 0.5 mul add 3 index 3 index 0.5 mul

3 index 1 sub make_triangle

3 index 2 index 0.25 mul add 3 index 3 index 0.5 mul add

3 index 0.5 mul 3 index 1 sub make_triangle

} ifelse

pop pop pop pop

} def

100 100 400 8 make_triangle showpage

Last modified: Fri Mar 2 01:24:14 2012 CS61A: Lecture #18 4



Recursive Thinking

• When you call a function from the Python library, you don’t look at
its implementation, just its documentation (“the contract”).

• By recursive thinking, I mean the extension of this same discipline
to functions as you are defining them.

• Old example from Lecture #9: filtering an rlist:

def filter_rlist(cond, seq):

"""The subsequence of rlist ‘seq’ for which the 1-argument

function ‘cond’ returns a true value."""

if seq == empty_rlist:

return empty_rlist

elif cond(first(seq)):

return make_rlist(first(seq),

Subseq. of rest(seq) satisfying cond)
else:

return Subseq. of rest(seq) satisfying cond

• How do we do the red parts? Look! This function filter rlist says
that it does what we need!

Last modified: Fri Mar 2 01:24:14 2012 CS61A: Lecture #18 5



Recursive Thinking Used

• We take the “leap of faith,” therefore, and use filter rlist:

def filter_rlist(cond, seq):

"""The subsequence of rlist ‘seq’ for which the 1-argument

function ‘cond’ returns a true value."""

if seq == empty_rlist:

return empty_rlist

elif cond(first(seq)):

return make_rlist(first(seq),

filter rlist(cond, rest(seq)))

else:

return filter rlist(cond, rest(seq))

Last modified: Fri Mar 2 01:24:14 2012 CS61A: Lecture #18 6



Recursive Thinking in Mathematics

• To prevent an infinite recursion, must use this technique only when

– The recursive cases are “smaller” than the input case, and

– There is a minimum “size” to the data, and

– All chains of progressively smaller cases reach a minimum in a
finite number of steps.

• We say that such “smaller than” relations are well founded.

• We have

Theorem (Noetherian Induction): Suppose≺ is a well-founded
relation and P is some property (predicate) such that when-
ever P (y) is true for all y ≺ x, then P (x) is also true. Then
P (x) is true for all x.

(After Emmy Noether 1882–1935, Göttingen and Bryn Mawr).

Last modified: Fri Mar 2 01:24:14 2012 CS61A: Lecture #18 7



Example: Making Change

• Suppose that we have a sequence of coin or bill values (indicating
what denominations of money exist) and an amount for which we
wish to make change.

• First, how can we change the amount?

def make_change(amount, coins = (50, 25, 10, 5, 1)):

"""A sequence of integers giving a number of each type of coin

in COINS such that the value of the indicated numbers of coins

will by exactly AMOUNT.

>>> tuple(make_change(81))

(1, 1, 0, 1, 1)

>>> tuple(make_change(47)

(0, 1, 2, 0, 2)

>>> tuple(make_change(47, (50, 25, 5, 1))

(0, 1, 4, 2)

"""

Last modified: Fri Mar 2 01:24:14 2012 CS61A: Lecture #18 8


	Lecture #18: Recursion 
	Subproblems and Self-Similarity
	The Gasket in Python
	Aside: The Gasket in Postscript
	Recursive Thinking
	Recursive Thinking Used
	Recursive Thinking in Mathematics
	Example: Making Change

