
Lecture #13: Lists, objects, and Arrows

Last modified: Fri Mar 2 00:39:17 2012 CS61A: Lecture #13 1

Diagrams of Sequence Objects

• We’ve often depicted values as arrows to something. To illustrate
x = (1, 2, 3) you might see:

...
x:
...

1 2 3

• The value of x here is the arrow, not the box (object) at the end.

• Copying x copies the arrow, not the box. After y = x:

...
x:
y:

1 2 3

• The is operator tests equality of arrows (or object identity: are
they pointing at the same thing?), . . .

• While == is generally concerned with equality of state (are the ar-
rows pointing at objects that contain equivalent things?)

Last modified: Fri Mar 2 00:39:17 2012 CS61A: Lecture #13 2

Another Take on Tuples vs. Lists

• When dealing with tuples (or immutables in general), we can concern
ourselves with equality alone.

• When dealing with lists (or mutable data in general), must consider
object identity.

• For tuples, we can treat xd and xs as identical, and use either one:

xd:
...
xs:

1 2 1 2

• But if the boxes depicted (mutable) lists, we’d still have xs==xd (for
now), but not necessarily in the future.

Last modified: Fri Mar 2 00:39:17 2012 CS61A: Lecture #13 3

A List Problem

def partition(L, x):

"""Rearrange the elements of L so that all items < ’x’ appear

before all items >= ’x’, and all are otherwise in their original

order. Modifies and returns L.

>>> L = [0, 9, 6, 2, 5, 11, 1]

>>> partition(L, 5)

[0, 2, 1, 9, 6, 5, 11]

>>> L

[0, 2, 1, 9, 6, 5, 11]

"""

Last modified: Fri Mar 2 00:39:17 2012 CS61A: Lecture #13 4

Another List Problem

def collapse_runs(L):

"""Remove the second and subsequent consecutive duplicates of

values in L, modifying and returning L.

>>> x = [1, 2, 1, 1, 1, 2, 0, 0]

>>> collapse_runs(x)

[1, 2, 1, 2, 0]

>>> x

[1, 2, 1, 2, 0]"""

Last modified: Fri Mar 2 00:39:17 2012 CS61A: Lecture #13 5


	Lecture #13: Lists, objects, and Arrows
	Diagrams of Sequence Objects 
	Another Take on Tuples vs. Lists
	A List Problem
	Another List Problem

