61A Project 1 Contest Results

Friday, November 18

A Long Time Ago in a Project Far, Far Away

A Long Time Ago in a Project Far, Far Away

Pig Contest Rules:

A Long Time Ago in a Project Far, Far Away

Pig Contest Rules:

- The score for an entry is the sum of win rates against every other entry

A Long Time Ago in a Project Far, Far Away

Pig Contest Rules:

- The score for an entry is the sum of win rates against every other entry
- All strategies must be deterministic, pure functions of the current player scores

A Long Time Ago in a Project Far, Far Away

Pig Contest Rules:

- The score for an entry is the sum of win rates against every other entry
- All strategies must be deterministic, pure functions of the current player scores
- Winning entries will receive (a little) extra credit

A Long Time Ago in a Project Far, Far Away

Pig Contest Rules:

- The score for an entry is the sum of win rates against every other entry
- All strategies must be deterministic, pure functions of the current player scores
- Winning entries will receive (a little) extra credit

A Long Time Ago in a Project Far, Far Away

Pig Contest Rules:

- The score for an entry is the sum of win rates against every other entry
- All strategies must be deterministic, pure functions of the current player scores
- Winning entries will receive (a little) extra credit

Pig Rules:

A Long Time Ago in a Project Far, Far Away

Pig Contest Rules:

- The score for an entry is the sum of win rates against every other entry
- All strategies must be deterministic, pure functions of the current player scores
- Winning entries will receive (a little) extra credit

Pig Rules:

- Roll a 6-sided die until you either hold or roll a 1 (pig)

A Long Time Ago in a Project Far, Far Away

Pig Contest Rules:

- The score for an entry is the sum of win rates against every other entry
- All strategies must be deterministic, pure functions of the current player scores
- Winning entries will receive (a little) extra credit

Pig Rules:

- Roll a 6-sided die until you either hold or roll a 1 (pig)
- First person to reach 100 points wins

A Long Time Ago in a Project Far, Far Away

Pig Contest Rules:

- The score for an entry is the sum of win rates against every other entry
- All strategies must be deterministic, pure functions of the current player scores
- Winning entries will receive (a little) extra credit

Pig Rules:

- Roll a 6-sided die until you either hold or roll a 1 (pig)
- First person to reach 100 points wins
-61A Variant: When scores sum to 7, roll a 4-sided die instead

Effective Strategy Ideas

Effective Strategy Ideas

Use the techniques described in the project

Effective Strategy Ideas

Use the techniques described in the project

- Quit while you're ahead (don't roll when you've already won)

Effective Strategy Ideas

Use the techniques described in the project

- Quit while you're ahead (don't roll when you've already won)
- Stop earlier using a 4-sided die

Effective Strategy Ideas

Use the techniques described in the project

- Quit while you're ahead (don't roll when you've already won)
- Stop earlier using a 4-sided die
- Take more risks when you're losing

Effective Strategy Ideas

Use the techniques described in the project

- Quit while you're ahead (don't roll when you've already won)
- Stop earlier using a 4-sided die
- Take more risks when you're losing

Force your opponent to roll a 4-sided die

Effective Strategy Ideas

Use the techniques described in the project

- Quit while you're ahead (don't roll when you've already won)
- Stop earlier using a 4-sided die
- Take more risks when you're losing

Force your opponent to roll a 4-sided die

- You know when holding would give them a 4-sided die

Effective Strategy Ideas

Use the techniques described in the project

- Quit while you're ahead (don't roll when you've already won)
- Stop earlier using a 4-sided die
- Take more risks when you're losing

Force your opponent to roll a 4-sided die

- You know when holding would give them a 4-sided die
- It's your turn! Your score: 14, Their score: 20, Turn: 15

Effective Strategy Ideas

Use the techniques described in the project

- Quit while you're ahead (don't roll when you've already won)
- Stop earlier using a 4-sided die
- Take more risks when you're losing

Force your opponent to roll a 4-sided die

- You know when holding would give them a 4-sided die
- It's your turn! Your score: 14, Their score: 20, Turn: 15

Combine strategies together

Effective Strategy Ideas

Use the techniques described in the project

- Quit while you're ahead (don't roll when you've already won)
- Stop earlier using a 4-sided die
- Take more risks when you're losing

Force your opponent to roll a 4-sided die

- You know when holding would give them a 4-sided die
- It's your turn! Your score: 14, Their score: 20, Turn: 15

Combine strategies together

- Each idea can be parameterized by a few constants

Effective Strategy Ideas

Use the techniques described in the project

- Quit while you're ahead (don't roll when you've already won)
- Stop earlier using a 4-sided die
- Take more risks when you're losing

Force your opponent to roll a 4-sided die

- You know when holding would give them a 4-sided die
- It's your turn! Your score: 14, Their score: 20, Turn: 15

Combine strategies together

- Each idea can be parameterized by a few constants
- Finding just the right set of constants can help a lot

Computing Win Rates Exactly

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)
A strategy is a table

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table
(me, 0, 0, 0): roll

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table
(me, 0, 0, 0): roll
(me,0,0,2): roll

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table
(me, 0, 0, 0): roll
(me,0,0,2): roll

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table
(me, 0, 0, 0): roll
(me,0,0,2): roll
(me,0,0,18): roll

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table
(me, 0, 0, 0): roll
(me,0,0,2): roll
(me,0,0,18): roll
(me,0,0,19): roll

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table
(me, 0, 0, 0): roll
(me,0,0,2): roll
(me,0,0,18): roll
(me,0,0,19): roll
(me, 0,0,20): hold

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table
(me, 0, 0, 0): roll
(me,0,0,2): roll
(me,0,0,18): roll
(me,0,0,19): roll
(me, 0,0,20): hold
(me, 0,0,21): hold

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table

```
(me,0,0,0): roll
(me,0,0,2): roll
```

(me,0,0,18): roll
(me,0,0,19): roll
(me, 0,0,20): hold
(me, 0,0,21): hold

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table

```
(me,0,0,0): roll
(me,0,0,2): roll
```

(me,0,0,18): roll
(me,0,0,19): roll
(me, 0,0,20): hold
(me, 0,0,21): hold
$\because \cdot$
(me,96,99,2): roll

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table

```
(me,0,0,0): roll
(me,0,0,2): roll
```

(me,0,0,18): roll
(me,0,0,19): roll
(me, 0,0,20): hold
(me, 0,0,21): hold
! ••
(me,96,99,2): roll
(me,96,99,4): hold

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table

```
(me,0,0,0): roll
(me,0,0,2): roll
```

(me,0,0,18): roll
(me,0,0,19): roll
(me, 0,0,20): hold
(me, 0,0,21): hold
$\because \cdot$
(me,96,99,2): roll
(me,96,99,4): hold

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table

```
(me,0,0,0): roll
(me,0,0,2): roll
```

(me,0,0,18): roll (me,0,0,19): roll
(me, 0,0,20): hold
(me, 0,0,21): hold
(me, 96,99,2): roll
(me,96,99,4): hold
(me,99,99,0): roll

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table
Each state has a chance to win

$$
\begin{aligned}
& (\mathrm{me}, 0,0,0): ~ r o l l \\
& (\mathrm{me}, 0,0,2): ~ r o l l
\end{aligned}
$$

(me,0,0,18): roll
(me,0,0,19): roll
(me, 0,0,20): hold
(me, 0,0,21): hold
...
(me,96,99,2): roll
(me,96,99,4): hold
(me,99,99,0): roll

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (\mathrm{me}, 0,0,0): ~ r o l l \\
& (\mathrm{me}, 0,0,2): ~ r o l l
\end{aligned}
$$

(me,0,0,18): roll
(me,0,0,19): roll
(me, 0,0,20): hold
(me, 0,0,21): hold
...
(me,96,99,2): roll
(me,96,99,4): hold
(me,99,99,0): roll (me,99,99,0)

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (\mathrm{me}, 0,0,0): ~ r o l l \\
& (\mathrm{me}, 0,0,2): ~ r o l l
\end{aligned}
$$

(me,0,0,18): roll
(me,0,0,19): roll
(me, 0,0,20): hold
(me, 0,0,21): hold
...
(me,96,99,2): roll
(me,96,99,4): hold
(me,99,99,0): roll
(me, 99, 99, 0)
1

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (m e, 0,0,0): ~ r o l l \\
& (m e, 0,0,2): ~ r o l l
\end{aligned}
$$

(me,0,0,18): roll (me,0,0,19): roll
(me, 0,0,20): hold
(me, 0,0,21): hold
(me,96,99,2): roll
(me,96,99,4): hold
(me,99,99,0): roll
(you, 97, 99, 0)
(me, 99, 99, 0)
1

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (m e, 0,0,0): ~ r o l l \\
& (m e, 0,0,2): ~ r o l l
\end{aligned}
$$

(me,0,0,18): roll (me,0,0,19): roll
(me, 0,0,20): hold
(me, 0,0,21): hold
(me,96,99,2): roll
(me,96,99,4): hold
(me,99,99,0): roll
$\begin{array}{ll}(\text { you }, 97,99,0) & 0 \\ (\text { me }, 99,99,0) & 1\end{array}$

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (m e, 0,0,0): ~ r o l l \\
& (m e, 0,0,2): ~ r o l l
\end{aligned}
$$

(me,0,0,18): roll (me,0,0,19): roll
(me, 0,0,20): hold
(me, 0,0,21): hold

...

(me,96,99,2): roll (me,96,99,4): hold
(me,99,99,0): roll
(me, 96, 99, 4+)
(you, 97, 99, 0)
(me, 99, 99, 0) 1

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (m e, 0,0,0): ~ r o l l \\
& (m e, 0,0,2): ~ r o l l
\end{aligned}
$$

(me,0,0,18): roll (me,0,0,19): roll
(me, 0,0,20): hold
(me, 0,0,21): hold
(me,96,99,2): roll (me,96,99,4): hold
(me,99,99,0): roll

$($ me $, 96,99,4+)$	1
$($ you $, 97,99,0)$	0
$($ me $, 99,99,0)$	1

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (m e, 0,0,0): ~ r o l l \\
& (m e, 0,0,2): ~ r o l l
\end{aligned}
$$

(me,0,0,18): roll
(me,0,0,19): roll
(me, 0,0,20): hold
(me, 0,0,21): hold
(me,96,99,2): roll
(me,96,99,4): hold
(me,99,99,0): roll
(me, $96,99,3$)
(me, 96, 99, 4+)
(you, $97,99,0$) 0
(me, 99,99,0) 1

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (\mathrm{me}, 0,0,0): \text { roll } \\
& (\mathrm{me}, 0,0,2): \text { roll }
\end{aligned}
$$

(me,0,0,18): roll (me,0,0,19): roll
(me, 0,0,20): hold
(me,0,0,21): hold
(me,96,99,2): roll
(me,96,99,4): hold
(me,99,99,0): roll

$(m e, 96,99,3)$	
$(m e, 96,99,4+)$	1
$(y o u, 97,99,0)$	0
$(m e, 99,99,0)$	1

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (m e, 0,0,0): ~ r o l l \\
& (m e, 0,0,2): ~ r o l l
\end{aligned}
$$

(me,0,0,18): roll (me,0,0,19): roll
(me, 0,0,20): hold
(me,0,0,21): hold
(me,96,99,2): roll
(me,96,99,4): hold
(me,99,99,0): roll
$\begin{array}{ll}(\text { me }, 96,99,3) & \\ (\text { me }, 96,99,4+) & 1 \\ (\text { you }, 97,99,0) & 0 \\ (\text { me }, 99,99,0) & 1\end{array}$

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (m e, 0,0,0): ~ r o l l \\
& (m e, 0,0,2): ~ r o l l
\end{aligned}
$$

(me,0,0,18): roll (me,0,0,19): roll
(me, 0,0,20): hold
(me, 0,0,21): hold
(me,96,99,2): roll
(me,96,99,4): hold
(me,99,99,0): roll

$($ me $, 96,99,3)$	$5 / 6$
$($ me $, 96,99,4+)$	1
$($ you $, 97,99,0)$	0
$($ me $, 99,99,0)$	1

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (m e, 0,0,0): ~ r o l l \\
& (m e, 0,0,2): ~ r o l l
\end{aligned}
$$

(me,0,0,18): roll (me,0,0,19): roll
(me, 0,0,20): hold (me, 0,0,21): hold
(me,96,99,2): roll
(me,96,99,4): hold
(me,99,99,0): roll

$(m e, 96,99,2)$	
$\left(\begin{array}{l}(\text { me }, 96,99,3)\end{array}\right.$	
$($ me $, 96,99,4+)$	1
$($ you $, 97,99,0)$	0
$(m e, 99,99,0)$	1

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (m e, 0,0,0): ~ r o l l \\
& (m e, 0,0,2): ~ r o l l
\end{aligned}
$$

(me,0,0,18): roll (me,0,0,19): roll (me, 0,0,20): hold (me, 0,0,21): hold

...

(me,96,99,2): roll (me,96,99,4): hold
:
(me,99,99,0): roll

$(\mathrm{me}, 96,99,2)$	
$\left(\begin{array}{l}\text { (me }, 96,99,3)\end{array}\right.$	
$($ me $, 96,99,4+)$	1
$($ you $, 97,99,0)$	0
$($ me $, 99,99,0)$	1

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (m e, 0,0,0): ~ r o l l \\
& (m e, 0,0,2): ~ r o l l
\end{aligned}
$$

(me,0,0,18): roll (me,0,0,19): roll (me, 0,0,20): hold (me,0,0,21): hold
...
(me,96,99,2): roll (me,96,99,4): hold
.
(me, 99,99,0): roll

(me, 96, 99, 2)	
((me, 96, 99, 3)	5/6
(me, 96, 99, 4+)	1
(you, 97, 99, 0)	0
(me, 99, 99, 0)	1

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (m e, 0,0,0): ~ r o l l \\
& (m e, 0,0,2): ~ r o l l
\end{aligned}
$$

(me,0,0,18): roll (me,0,0,19): roll (me, 0,0,20): hold (me,0,0,21): hold
...
(me,96,99,2): roll (me,96,99,4): hold
.
(me,99,99,0): roll
$\left(\begin{array}{ll}(\mathrm{me}, 96,99,2) & 5 / 6 \\ (\text { (me }, 96,99,3) & 5 / 6 \\ (\text { me }, 96,99,4+) & 1 \\ (\text { you }, 97,99,0) & 0 \\ (\mathrm{me}, 99,99,0) & 1\end{array}\right.$

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (m e, 0,0,0): ~ r o l l \\
& (m e, 0,0,2): ~ r o l l
\end{aligned}
$$

(me, $0,0,18):$ roll
(me, $0,0,19): ~ r o l l$
(me, $0,0,20): ~ h o l d$
(me, $0,0,21): ~ h o l d$

-••

(me,96,99,2): roll (me,96,99,4): hold
!
(me,99,99,0): roll
$\left(\begin{array}{ll}(\text { me }, 96,99,2) & 5 / 6 \\ (\text { (me }, 96,99,3) & 5 / 6 \\ (\text { me }, 96,99,4+) & 1 \\ (\text { you }, 97,99,0) & 0 \\ (\text { me }, 99,99,0) & 1\end{array}\right.$

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (\mathrm{me}, 0,0,0): \text { roll } \\
& (\mathrm{me}, 0,0,2): \text { roll }
\end{aligned}
$$

('me, 0, 0, 18): roll (me,0,0,19): roll (me, 0,0,20): hold (me, 0,0,21): hold

...

(me,96,99,2): roll (me,96,99,4): hold
(me,99,99,0): roll
$\left(\begin{array}{ll}(\mathrm{me}, 96,99,0) & \\ \cdots & 5 / 6 \\ \left(\begin{array}{l}(\mathrm{me}, 96,99,2)\end{array}\right. & 5 / 6 \\ (\mathrm{me}, 96,99,3) & 1 \\ (\mathrm{me}, 96,99,4+) & 0 \\ (\text { you }, 97,99,0) & 1\end{array}\right.$

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (m e, 0,0,0): ~ r o l l \\
& (m e, 0,0,2): ~ r o l l
\end{aligned}
$$

(me,0,0,18): roll

$$
(m e, 0,0,19): \text { roll }
$$

(me, 0,0,20): hold
(me, 0,0,21): hold

...

(me,96,99,2): roll (me,96,99,4): hold
,
(me,99,99,0): roll
$\left(\begin{array}{ll}(\mathrm{me}, 96,99,0) & \\ \cdots & 5 / 6 \\ \left(\begin{array}{l}\text { (me, } 96,99,2)\end{array}\right. & 5 / 6 \\ (\text { me }, 96,99,3) & 1 \\ (\text { me, } 96,99,4+) & 0 \\ \text { (me }, 99,99,0) & 1\end{array}\right.$

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (m e, 0,0,0): ~ r o l l \\
& (m e, 0,0,2): ~ r o l l
\end{aligned}
$$

(me, 0, 0, 18): roll (me,0,0,19): roll (me, 0,0,20): hold (me, 0,0,21): hold

...

(me,96,99,2): roll (me,96,99,4): hold
...
(me,99,99,0): roll

$/ /(\text { me, } 96,99,0)$	
$/\left(\frac{\cdots}{(m e, 96,99,2)}\right.$	
	5/6
(me, 96, 99, 3)	5/6
(me, 96, 99,4+)	1
(you, 97, 99, 0)	0
(me, 99, 99, 0)	1

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$$
\begin{aligned}
& (\mathrm{me}, 0,0,0): \text { roll } \\
& (\mathrm{me}, 0,0,2): \operatorname{roll}
\end{aligned}
$$

(me, $0,0,18): ~ r o l l$
(me, $0,0,19): ~ r o l l$
(me, $0,0,20): ~ h o l d$
$(m e, 0,0,21): ~ h o l d$

...

(me,96,99,2): roll (me,96,99,4): hold
.
(me,99,99,0): roll

Computing Win Rates Exactly

A state in the game:
(who rolls next?, player score, opponent score, turn total)

A strategy is a table Each state has a chance to win

$\begin{aligned} & (\mathrm{me}, 0,0,0): \text { roll } \\ & (\mathrm{me}, 0,0,2): \text { roll } \end{aligned}$		
(me, 0,0,18): roll	(me, 96, 99, 0)	$\frac{1}{6} \cdot 0+\frac{2}{6} \cdot \frac{5}{6}+\frac{3}{6} \cdot 1$
(me, $0,0,19$) roll		
(me, 0, 0, 20) : hold	($=$ (me, 96, 99, 2)	5/6
(me,0,0,21) : hold	(me,96,99,2)	5/6
	(me, 96, 99, 3)	5/6
(me, 96,99,2): roll	(me, 96, 99,4+)	1
(me, 96,99,4): hold	(you, 97, 99, 0)	0
(me, 99,99,0): roll	(me, 99, 99, 0)	1

Top Finishers

Top Finishers

5th: Stephen Chen \& Winne Yan

53.3\%

Top Finishers

5th: Stephen Chen \& Winne Yan 53.3\%
4th: Michelle Nguyen \& WeiJia Jin 53.6\%

Top Finishers

5th: Stephen Chen \& Winne Yan 53.3\%
4th: Michelle Nguyen \& WeiJia Jin 53.6\%
3rd: Siqi Wu \& WeiChih Wang 53.8\%

Top Finishers

5th: Stephen Chen \& Winne Yan	53.3%
4th: Michelle Nguyen \& WeiJia Jin	53.6%
3rd: Siqi Wu \& WeiChih Wang	53.8%
2nd: Wonjohn Choi	55.5%

Top Finishers

5th: Stephen Chen \& Winne Yan	53.3%
4th: Michelle Nguyen \& WeiJia Jin	53.6%
3rd: Siqi Wu \& WeiChih Wang	53.8%
2nd: Wonjohn Choi	55.5%
1st: Keegan Mann	55.7%
	Yan Duan \& Ziming Li
	Brian Prike \& Zhenghao Qian
	Parker Schuh \& Robert Chatham

Top Finishers

5th: Stephen Chen \& Winne Yan 53.3\%
4th: Michelle Nguyen \& WeiJia Jin 53.6\%
3rd: Siqi Wu \& WeiChih Wang 53.8\%
2nd: Wonjohn Choi 55.5\%
1st: Keegan Mann 55.7\%
Yan Duan \& Ziming Li 55.7\%
Brian Prike \& Zhenghao Qian 55.7\%
Parker Schuh \& Robert Chatham 55.7\%
Lots of entries were awesome! Great work.

Visualizing Optimal Play in Pig

Visualizing Optimal Play in Pig

Visualizing Optimal Play in Pig

The roll/hold boundary for optimal Pig play

Todd W. Neller and Clifton G.M. Presser. Optimal Play of the Dice Game Pig, The UMAP Journal 25(1) (2004), pp. 25-47

Visualizing Optimal Play in Pig

The roll/hold boundary for optimal Pig play

Todd W. Neller and Clifton G.M. Presser. Optimal Play of the Dice Game Pig, The UMAP Journal 25(1) (2004), pp. 25-47

