
61A Lecture 21

Wednesday, October 23

Announcements

• Project 3 is due Thursday 10/24 @ 11:59pm
Extra reader office hours this week:

•Tuesday 6-7:30 in Soda 405

•Wednesday 5:30-7 in Soda 405

•Thursday 5:30-7 in Soda 320

• Midterm 2 is on Monday 10/28 7pm-9pm
Topics and locations: http://inst.eecs.berkeley.edu/~cs61a/fa13/exams/midterm2.html
Emphasis: mutable data, object-oriented programming, recursion, and recursive data
Have an unavoidable conflict? Fill out the conflict form by Friday 10/25 @ 11:59pm!
Review session on Saturday 10/26 from 1pm to 4pm in 1 Pimentel
HKN review session on Sunday 10/27 from 4pm to 7pm to 2050 VLSB

• Homework 7 is due Tuesday 11/5 @ 11:59pm (Two weeks)

• Respond to lecture questions: http://goo.gl/FZKvgm

2

Generic Functions of Multiple Arguments

More Generic Functions

A function might want to operate on multiple data types

Last time:

• Polymorphic functions using message passing

• Interfaces: collections of messages that have specific behavior conditions

• Two interchangeable implementations of complex numbers

Today:

• An arithmetic system over related types

• Type dispatching

• Data-directed programming

• Type coercion

What's different? Today's generic functions apply to multiple arguments that
 don't share a common interface.

4

Representing Numbers

Rational Numbers

Rational numbers represented as a numerator and denominator

 class Rational:

 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numer = numer // g
 self.denom = denom // g

 def __repr__(self):
 return 'Rational({0}, {1})'.format(self.numer, self.denom)

 def add_rational(x, y):
 nx, dx = x.numer, x.denom
 ny, dy = y.numer, y.denom
 return Rational(nx * dy + ny * dx, dx * dy)

 def mul_rational(x, y):
 return Rational(x.numer * y.numer, x.denom * y.denom)

Greatest common
divisor

6

Complex Numbers: the Rectangular Representation

 class ComplexRI:

 def __init__(self, real, imag):
 self.real = real
 self.imag = imag

 @property
 def magnitude(self):
 return (self.real ** 2 + self.imag ** 2) ** 0.5

 @property
 def angle(self):
 return atan2(self.imag, self.real)

 def __repr__(self):
 return 'ComplexRI({0}, {1})'.format(self.real,
 self.imag)

 def add_complex(z1, z2):
 return ComplexRI(z1.real + z2.real,
 z1.imag + z2.imag)

Might be either ComplexMA or
ComplexRI instances

7

Special Methods for Arithmetic

Special Methods

Adding instances of user-defined classes with __add__.

class Rational:

 ...

 def __add__(self, other):
 return add_rational(self, other)

>>> Rational(1, 3) + Rational(1, 6)
Rational(1, 2)

9

We can also __add__ complex numbers, even with multiple representations. (Demo)

http://docs.python.org/py3k/reference/datamodel.html#special-method-names

http://getpython3.com/diveintopython3/special-method-names.html

Type Dispatching

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need to cross type boundaries

add_rational mul_rational

Rational numbers as
numerators & denominators

add_complex mul_complex

Complex numbers as
two-dimensional vectors

How do we add a complex number and a rational
number together?

There are many different techniques for doing this!

11

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid.

 def complex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def rational(z):
 return type(z) is Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

 def add_by_type_dispatching(z1, z2):
 """Add z1 and z2, which may be complex or rational."""
 if complex(z1) and complex(z2):
 return add_complex(z1, z2)
 elif complex(z1) and rational(z2):
 return add_complex_and_rational(z1, z2)
 elif rational(z1) and complex(z2):
 return add_complex_and_rational(z2, z1)
 else:
 add_rational(z1, z2)

Converted to a
real number (float)

12

Tag-Based Type Dispatching

Idea: Use a dictionary to dispatch on pairs of types.

 def type_tag(x):
 return type_tags[type(x)]

 type_tags = {ComplexRI: 'com',
 ComplexMA: 'com',
 Rational: 'rat'}

 def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add_implementations[types](z1, z2)

Declares that ComplexRI
and ComplexMA should be

treated the same

13

(Demo)

Type Dispatching Analysis

m · (m − 1) · n

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary.

Extensible: Any new numeric type can "install" itself into the existing system by adding
new entries to various dictionaries

Question 1: How many cross-type implementations are required for m types and n operations?

 def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add_implementations[types](z1, z2)

15

Respond: http://goo.gl/FZKvgm

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary.

Extensible: Any new numeric type can "install" itself into the existing system by adding
new entries to various dictionaries

Arg 1 Arg 2 Add Multiply

Complex Complex

Rational Rational

Complex Rational

Rational Complex

16

Data-Directed Programming

Data-Directed Programming

There's nothing addition-specific about add.

Idea: One function for all (operator, types) pairs

 def apply(operator_name, x, y):
 tags = (type_tag(x), type_tag(y))
 key = (operator_name, tags)
 return apply_implementations[key](x, y)

(Demo)

18

Type Coercion

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

 def rational_to_complex(x):
 return ComplexRI(x.numer/x.denom, 0)

 coercions = {('rat', 'com'): rational_to_complex}

Question: Can any numeric type be coerced into any other?

Question: Have we been repeating ourselves with data-directed programming?

20

Respond: http://goo.gl/FZKvgm

Applying Operators with Coercion

1.Attempt to coerce arguments into values of the same type

2.Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

 if (tx, ty) in coercions:

 tx, x = ty, coercions[(tx, ty)](x)

 elif (ty, tx) in coercions:

 ty, y = tx, coercions[(ty, tx)](y)

 else:

 return 'No coercion possible.'

 assert tx == ty

 key = (operator_name, tx)

 return coerce_apply_implementations[key](x, y) (Demo)
21

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type coercion as necessary.

Requires that all types can be coerced into a common type.

More sharing: All operators use the same coercion scheme.

Arg 1 Arg 2 Add Multiply
Complex Complex

Rational Rational

Complex Rational

Rational Complex

From To Coerce

Complex Rational

Rational Complex

Type Add Multiply

Complex

Rational

22

