61A Lecture 19

Friday, October 18

Comparing Orders of Growth

Sets

Announcements

¥Homework 6 is due Tuesday 10/22 @ 11:59pm
Includes a mid-semester survey about the course so far

¥Project 3 is due Thursday 10/24 @ 11:59pm

*¥Midterm 2 is on Monday 10/28 7pm-9pm

¥Guerrilla section 3 this weekend
Object-oriented programming, recursion, and recursive data structures
2pm-5pm on Saturday and 10am-1pm on Sunday

Please let us know you are coming by filling out the Piazza poll

Comparing orders of growth (n is the problem size)

! (") * Exponential growth! Recursive fib takes

1+V5
©(¢") steps, where ¢ = —3 ~ 1.61828

(SIS p— ’
Incrementing the problem scales R(n) by a factor.
(—)(nz) Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

@(n) Linear growth. Resources scale with the problem.

O(logn) | 1 i growth. These p scale well.

Doubling the problem only increments R(n).

©(1) * Constant. The problem size doesn't matter.

Sets

One more built-in Python container type
¥Set literals are enclosed in braces
¥Duplicate elements are removed on construction

¥Sets are unordered, just like dictionary entries

>>> s = (3, 2, 1, 4, 4}
55> s

{1, 2, 3, 4}

>>> 3 1in s
True

>>> len(s)
4

>>> s.union({1, 5})

{1, 2, 3, 4, 5}

>>> s.intersection({6, 5, 4, 3})
{3, 4}



Implementing Sets

Sets as Unordered Sequences

Review: Order of Growth

For a set operation that takes " linear" time, we say that

n: size of the set

R(n): number of steps required to perform the operation

0= O e

which means that there are positive constants kiand k2 such that
ki-n<R(n)<k;-n

for sufficiently large values of n.

Implementing Sets

What we should be able to do with a set:
¥Membership testing: Is a value an element of a set?

¥Union: Return a set with all elements in setl or set2

¥Intersection: Return a set with any elements in setl and set2

*¥Adjunction: Return a set with all elements in s and a value v

Union Intersection Adjunction
1 2 1 2
2
3 3 3 3 3
4 5 4 5
~_ ~ ~_
12 12
3 3 3
45 4

Sets as Unordered Sequences

Proposal 1: A setis represented by a recursive list that contains no duplicate items.

def empty(s):
i return s is Rlist.empty

set_contains(s, v):
if empty(s):
return False
elif s.first == v:
return True
else:
return set_contains(s.rest, v)

(Demo)

Sets as Unordered Sequences

def adjoin_set(s, v):
if set_contains(s, v):
return s
else:
return Rlist(v, s)

def intersect_set(setl, set2):
in_set2 = lambda v: set_contains(set2, v)
return filter rlist(setl, in_set2)

def union_set(setl, set2):
not_in_set2 = lambda v: not set_contains(set2, v)
setl_not_set2 = filter_ rlist(setl, not_in_set2)
return extend rlist(setl_not_set2, set2)

(Demo)

Time order of growth

O(n)

The size of the set

o(n?)

Assume sets are

the same size

o(n?)



Sets as Ordered Sequences

Proposal 2: A setis represented by a recursive list with unique elements ordered from
least to greatest

def set_contains(s, v):
if empty(s) or s.first > v:
return False
elif s.first == v:
return True
else:
return set_contains(s.rest, v)

Sets as Ordered Sequences

Order of growth? O(n)
Set Intersection Using Ordered Sequences
This algorithm assumes that elements are in order.
def intersect_set(setl, set2):
if empty(setl) or empty(set2):
return Rlist.empty
else:
el, e2 = setl.first, set2.first Sets as Binary Search Trees
if el == e2:
return Rlist(el, intersect_set(setl.rest, set2.rest))
elif el < e2:
return intersect_set(setl.rest, set2)
elif e2 < el:
return intersect_set(setl, set2.rest)
(Demo)
Order of growth? O(n)
Tree Sets Membership in Tree Sets
Proposal 3: A setis represented as a Tree. Each entry is: Set membership traverses the tree
¥Larger than all entries in its left branch and ¥The element is either in the left or right sub-branch
¥Smaller than all entries in its right branch ¥By focusing on one branch, we reduce the set by about half
def set_contains(s, v): El

if s is None:

5
return False / \

elif s.entry == v:
return True

3/7\9 /3\ /5\ N

1/ \5 \11 1 5/7\9 1/3 7/9\11
\

11

return set contains(s.right, v) 1
elif s.entry > v:
return set contains(s.left, v)

If 9iis in the

set, itis in
this branch

Order of growth?



Adjoining to a Tree Set

5 9 7 None
VAN
/ / \ 7 11 None None
1 7 11
Right! Left! Right! Stop!
5 9 7
/N /\ \
3 9 8
/ / \ 7\ 11
1 71 8
\
8 (Demo)

What Did | Leave Out?

Sets as ordered sequences:
¥Adjoining an element to a set

*¥Union of two sets

Sets as binary trees:
¥Intersection of two sets
*Union of two sets

¥Balancing a tree

That's all on homework 7!

More Set Operations



