
61A Lecture 19

Friday, October 18

Announcements

¥Homework 6 is due Tuesday 10/22 @ 11:59pm

! Includes a mid-semester survey about the course so far

¥Project 3 is due Thursday 10/24 @ 11:59pm

¥Midterm 2 is on Monday 10/28 7pm-9pm

¥Guerrilla section 3 this weekend

! Object-oriented programming, recursion, and recursive data structures

! 2pm-5pm on Saturday and 10am-1pm on Sunday

! Please let us know you are coming by filling out the Piazza poll

2

Comparing Orders of Growth

Comparing orders of growth (n is the problem size)

4

! (bn)

�(n)

�(log n)

�(1)

⇥(n2)

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Constant. The problem size doesn't matter.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

⇥(
p
n)

⇥(n6)

Sets

Sets

One more built-in Python container type

¥Set literals are enclosed in braces

¥Duplicate elements are removed on construction

¥Sets are unordered, just like dictionary entries

>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> 3 in s
True
>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}
>>> s.intersection({6, 5, 4, 3})
{3, 4}

6

Implementing Sets

Implementing Sets

What we should be able to do with a set:

¥Membership testing: Is a value an element of a set?

¥Union: Return a set with all elements in set1 or set2

¥Intersection: Return a set with any elements in set1 and set2

¥Adjunction: Return a set with all elements in s and a value v

Union

1

3
4

2

3
5

1

3
4

2

5

Intersection

1

3
4

2

3
5

3

Adjunction

1

3
4

2

1

3
4

2

8

Sets as Unordered Sequences

Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that contains no duplicate items.

 def empty(s):
 return s is Rlist.empty

 def set_contains(s, v):
 if empty(s):
 return False
 elif s.first == v:
 return True
 else:
 return set_contains(s.rest, v)

(Demo)

10

R(n) = ! (n)

k1 · n � R(n) � k2 · n

Review: Order of Growth

For a set operation that takes " linear" time, we say that

n: size of the set

R(n): number of steps required to perform the operation

which means that there are positive constants k1 and k2 such that

for sufficiently large values of n.

An example f(n)

11

�(n)

�(n2)

Sets as Unordered Sequences

 def adjoin_set(s, v):
 if set_contains(s, v):
 return s
 else:
 return Rlist(v, s)

 def intersect_set(set1, set2):
 in_set2 = lambda v: set_contains(set2, v)
 return filter_rlist(set1, in_set2)

 def union_set(set1, set2):
 not_in_set2 = lambda v: not set_contains(set2, v)
 set1_not_set2 = filter_rlist(set1, not_in_set2)
 return extend_rlist(set1_not_set2, set2)

�(n2)

Time order of growth

The size of the set

Assume sets are
the same size

12

(Demo)

Sets as Ordered Sequences

Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with unique elements ordered from
least to greatest

 def set_contains(s, v):
 if empty(s) or s.first > v:
 return False
 elif s.first == v:
 return True
 else:
 return set_contains(s.rest, v)

�(n)Order of growth?

14

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

 def intersect_set(set1, set2):
 if empty(set1) or empty(set2):
 return Rlist.empty
 else:
 e1, e2 = set1.first, set2.first
 if e1 == e2:
 return Rlist(e1, intersect_set(set1.rest, set2.rest))
 elif e1 < e2:
 return intersect_set(set1.rest, set2)
 elif e2 < e1:
 return intersect_set(set1, set2.rest)

(Demo)

�(n)Order of growth?

15

Sets as Binary Search Trees

Tree Sets

Proposal 3: A set is represented as a Tree. Each entry is:

¥Larger than all entries in its left branch and

¥Smaller than all entries in its right branch

7

3

1 5

9

11

7

3

1

5 9

11

5

3

1 7

9

11

17

Membership in Tree Sets

Set membership traverses the tree

¥The element is either in the left or right sub-branch

¥By focusing on one branch, we reduce the set by about half

5

3

1 7

9

11

 def set_contains(s, v):
 if s is None:
 return False
 elif s.entry == v:
 return True
 elif s.entry < v:
 return set_contains(s.right, v)
 elif s.entry > v:
 return set_contains(s.left, v)

9

If 9 is in the
set, it is in

this branch

Order of growth?

18

Adjoining to a Tree Set

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

8

None

Stop!

87

8
7

9

11

8

5

3

1 7

9

11

8 (Demo)

19

More Set Operations

What Did I Leave Out?

Sets as ordered sequences:

¥Adjoining an element to a set

¥Union of two sets

Sets as binary trees:

¥Intersection of two sets

¥Union of two sets

¥Balancing a tree

That's all on homework 7!

21

