CS 61A Midterm 2 Study Guide — Page 1

a_list = [1, 2, 3] Global frame Ii(s)t -
alist o« 4|, 3

a_tuple = (1, 2, 3)

nonlocal <name>,

Effect: Future assignments to_that _name_change its

pre-existing binding in the

<name 2>,

dict = {1: ' ', 20 'two' . : ” . d
adic { one Wo'} ape the current environment in which that namejis bound.
. a_dict tuple
e Tuples are immutable sequences. Pyth D i
e Lists are mutable sequences. LRI ROEEE E
e Dictionaries are unordered collections From the Python 3 language reference: enclosing scope
of key-value pairs.
Dictionary keys do have two restrictions: dict Names listed in a nonlocal statement must refer to
e A key of a dictionary cannot be an object of a 1 "one" pre-existing bindings in an enclosing scope.
mutable built-in type. . .
e Two keys cannot be equal. There can be at most 2 "two" Names listed in a nonlocal statement must not collide
one value for a key. with pre-existing bindings in the local scope.
suits = ['v', '¢'] Global frame list
= i . 0 1 2 3 4
s sg1ts) it e |[oen [fare (o [fomepape Status Effect
t = list(suits) c t bindi £ nn
suits += ['a', 's'] S *No nonlocal statement reate a new binding Trom name “x
o t s «"x" is not bound locally to object 2 in the first frame of
t[e] = suits '_‘ﬁ‘\\\‘o 1 the current environment.

suits.append('Joker')

for <name> in <expression>:
<suite>

1. Evaluate the header <expression>, which must yield an
iterable value.

2. For each element in that sequence, in order
A. Bind <name> to that element in the local environment.
B. Execute the <suite>.

*No nonlocal statement
e"x" is bound locally

Re-bind name "x" to object 2 in the
first frame of the current env.

enonlocal x
e'x" is bound in a non-local frame

Re-bind "x" to 2 in the first non-
local frame of the current
environment in which it is bound.

A range is a sequence of consecutive integers.*

ves, =5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

(but not the global frame)

enonlocal x
e'x" is not bound in a non-local .
frame

x' found

SyntaxError: no binding for nonlocal

enonlocal x !
"x" is bound in a non-local frame

o 'x
also bound locally

SyntaxError: name
and nonlocal

x' is parameter

* X

>>> city = 'Berkeley'

>>> len(city) range(-2, 2)
8

>>>

city[3] <(:An element of a string)

k! is itself a string!

Length. A sequence has a finite length.

Element selection. A sequence has an element
corresponding to any non-negative integer index less
than its length, starting at @ for the first element.

Generator expressions
(<map exp> for <name> in <iter exp> if <filter exp>)

e Evaluates to an iterable object.

<iter exp> is evaluated when the generator expression
is evaluated.

Remaining expressions are evaluated when elements are
accessed.

def make_withdraw(balance):
def withdraw(amount):
nonlocal balance

Global frame func make_withdraw(balance)

make_withdraw

if amount > balance: withdraw
return 'No funds' 3 q
A function with a
balance -= amount f1: make_withdraw arent frame
return balance P
. balance |50
return withdraw i
withdraw The parent contains
withdraw = make_withdraw(100) Retum local state
withdraw(25) value
withdraw(25)
withdraw [parent=f1]

amount |25 Every call changes
Return |g the balance

value

withdraw [parent=f1]
amount 25

Return 50
value

List comprehensions

[<map exp> for <name> in <iter exp> if <filter exp>]
Short version: [<map exp> for <name> in <iter exp>]

Unlike generator expressions, the map expression is
evaluated when the list comprehension is evaluated.

>>> suits = ['heart', 'diamond', 'spade', 'club']
>>> from unicodedata import lookup
+ s.upper() + ' SUIT') for s in suits]

>>> [lookup('WHITE '
1

[I(\.;I, 'C', o)

‘el

. @ Call to fib
L T @® Found in cache

“e.
fib(3) .
e N
fib(1) fib(2)

n: size of the problem
R(n): Measurement of some resource used (time or space)
R(n) =O(f(n))
means that there are constants ki and k2 such that

ki- f(n) < R(n) < k- f(n)
for sufficiently large values of n.
om*) Om?)) ©O(logn)

o™ o(1)

Python pre-computes which frame contains each name before
executing the body of a function.

Therefore, within the body of a function, all instances of a
name must refer to the same frame.

def make_withdraw(balance):
def withdraw(amount):
if amount > balance:
return 'Insufficient funds

Local assignment

UnboundLocalError: local variable 'balance’ referenced before assignment

return balance
return withdraw

wd = make_withdraw(20)
wd(5)

Every object that is an instance of a user-defined class
has a unique identity: >>> a = Account('Jim')
>>> b = Account('Jack')

Identity testing is performed by "is" and "is not" operators.
Binding an object to a new name using assignment does not create
a new object: >>> a is a >>> ¢ = a

True >>> ¢ is a
>>> a is not b True
True

Mutable values can be changed without a nonlocal statement.
Global frame

func make_withdraw_list(balance)

make_withdraw_list
withdraw

Mutable value
can change

=

f1: make_withdraw_list -
func withdraw(amount) [parent=f1]

balance |100
withdraw

def make_withdraw_list(balance):

b = [balance]

def withdraw(amount):
if amount > b[0]:

return 'Insufficient funds'

b[@] = b[@] - amount
return b[e]

return withdraw

Name-value binding
Return
cannot change value
withdraw [parent=f1]

amount 25

withdraw = make_withdraw_list(100)
withdraw(25)

- The def statement header is
similar to other functions

- Conditional statements check
for base cases

- Base cases are evaluated
without recursive calls

- Typically, all other cases are
evaluated with recursive calls

def pig_latin(w)
if starts_with_a_vowel(w):

return w + 'ay
return pig_latin(w[1l:] + w[0])

def starts_with_a_vowel(w):

return w[0].lower() in 'aeiou’

func withdraw(amount) [parent=f1]

CS 61A Midterm 2 Study Guide — Page 2

class <name>(<base class>)
<suite>
*A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.
eStatements in the <suite> create attributes of the class.

>>> a = Account('Jim")

When a class is called:

1. A new instance of that class is created:

2. The constructor __init__ of the class is called with the
new object as its first argument (called self), along with

To evaluate a dot expression:
1.

<expression> . <name>

Evaluate the <expression> to the left of the dot, which yields

the object of the dot expression.

<name> is matched against the instance attributes of that object;

if an attribute with that name exists, its value is returned.

If not, <name> is looked up in the class, which yields a class

attribute value.

. That value is returned unless it is a function, in which case a
bound method is returned instead.

To look up a name in a class.

1. If it names an attribute in the class,

2. Otherwise, look up the name in the base class, if there is one.

2.

3.

4

return the attribute value.

additional arguments provided in the call expression.
class Account(object);

def __init__ (self, account_holder)

self.balance 0

self.holder account_holder

Match name against
instance attributes

Look up the name
in the class

‘def

__init__(self, account_holder)::
self.balance = 0 :
self.holder = account_holder

deposit(self, amount): :
self.balance = self.balance + amount
return self.balance :

withdraw(self, amount):
if amount > self.balance:

return 'Insufficient funds' :
: self.balance = self.balance - amount
H return self.balance :

idef

instance)

Assignment affects
instance attributes

A

)

‘set':

instance
return instance

{'get': get_value, set_value}
def bind_method(value,
if callable(value):
def method(*args):
return value(instance,
return method
else:
return value

def make_class(attributes={}, base_class=None):

def get_value(name):
<(%1ass attribute lookuéJ

instance):

*args)

Assignment statements with a dot expression on their left-hand
side affect attributes for the object of that dot expression
If the object is an instance, then assignment sets an
instance attribute

If the object is a class, then assignment sets a class

: return attributes[name]
ielif base_class is not None:
i return base class['get']

def set_value(name, value): .
attributes[name] = value Common dispatch
dictionary pattern

def new(*args): ué[

)

attripyte return init_instance (¢ ¥args)
>>> jim_account = Account('Jim') | >>> jim_account.interest = 0.8 clsi= {iget’': get value, set_value, 'new’: new}
>>> tom_account = Account('Tom') | >>> jim_account.interest returnicls:
>>> tom_account.interest 0.8 def init_instance(cls, *args)
0.02 >>> tom_account.interest instance = - —
>>> jim_account.interest 0.04 init = cls['get'] <(PESEIEN CHEEITIEIRY)
0.02 >>> Account.interest = 0.05 if init is not None
>>> tom_account.interest >>> tom_account.interest init(instance, *args) Special constructor
0.02 0.05] return instance name is fixed here
>>> Account.interest = 0.04 >>> jim_account.interest def make_account_class()
>>> tom_account.interest 0.8 interest = 0.02
0.04 def __init__(self, account_holder):
self['set']("holder', account_holder)
Instance Rk self['set']('balance', 0)
Attribute i} \ERTRCRROTIE ;ﬁz&rﬁaﬂ;& def deposit(self, amount):
Assignment statemgnt s new_balance = self['get']('balance') + amount

This expression

evaluates to an object or modifies

)

the “interest”
attribute of
tom_account

But the name (“interest”)
is not looked up

self['set']('balance', new_balance)
return self['get']('balance')

return make_class(locals())
Account = make_account_class()

class ComplexRI(object):

def _ init_ (self, real, imag)

0

class CheckingAccount (A

withdraw_fee = 1
def withdraw(self, amount):

return Account.withdraw(self, amount + self.withdraw_fee)
To look up a name in a class: >>> ch = CheckingAccount('T")
1.If it names an attribute in the >>> ch.interest
class, return the attribute value. 8;?1 h it (20
2.0therwise, look up the name in the i ch.deposit(20)
base class, if there is one. >>> ch.withdraw(s)
class SavingsAccount (Account): 14

deposit_fee = 2

self.real = real
imag = imag| Special decorator: "Call this

function on attribute look-up"

def magnitude(self):

return (self.real ** 2 + self.imag ** 2) ** 0.5

Type dispatching: Define a different function for each
possible combination of types for which an operation is valid
def iscomplex(z):

return type(z) in (ComplexRI, ComplexMA)

def deposit(self, amount):
return Account.deposit(self, amount - self.deposit_fee)

class AsSeenOnTVAccount (CheckingAccount,
def __ init_ (self, account_holder)
self.holder account_holder
self.balance = 1 # A free dollar!

SavingsAccount):

def isrational(z):
return type(z) == Rational Converted to a
real number (float)
def add_complex_and_rational(z,
return ComplexRI(z.real +47 z.imag)
def add_by_type_dispatching(zl, z2):

wan

"""Add z1 and z2, which may be complex or rational
if iscomplex(zl) and iscomplex(z2):

return add_complex(zl, z2)
elif iscomplex(zl) and isrational(z2):

class Rlist(object): class Tree(object):

clas

left=None

valid
tree has
cycles!

self.left
v self.right

empty = EmptyList()

def __init__ (self, entry,

right=None) :

return add_complex_and_rational(zl, z2)
elif isrational(zl) and iscomplex(z2):
return add_complex_and_rational(z2, zl)
, else:
add_rational(zl, z2)

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross—type) operations

def ;€{21;?Féielf%1i;£5t’ rest=empty): def map_rlist(s, fn): Valid if these)|def coerce_apply(operator_name, x, y)
self.rest = rest if s is Rlist.empty:| are None or a tx, ty = type_tag(x), type_tag(y)
................ T return s Tree instance if tx 1= ty:)
{def __len_ (self): rest = map_rlist(s.rest, fn) if (tx, ty) in coercions:
| return 1 + len(self.rest): return Rlist(fn(s.first),rest)) tx, x = ty1 coerc19ns[(tx, ty)](x)
--- : . . elif (ty, tx) in coercions:
def _ getitem_ (self, i): def count_entries(tree): ty, y = tx, coercions[(ty, tx)](y)
iF i == 0 if tree is None: else:
return self.first rfturn 0 . return 'No coercion possible.’
return self.rest[i-1] left = count_entries(tree.left) key = (operator_name, tx)
right = count_entries(tree.right) return coerce_apply.implementations[key] (x, y)
return 1 + left + right

