
. . .

CS 61A Midterm 2 Study Guide – Page 1

for <name> in <expression>:
 <suite>
1. Evaluate the header <expression>, which must yield an

iterable value.
2. For each element in that sequence, in order:

A. Bind <name> to that element in the local environment.
B. Execute the <suite>.

A range is a sequence of consecutive integers.*

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

range(-2, 2)
>>> city = 'Berkeley'
>>> len(city)
8
>>> city[3]
'k'

Length. A sequence has a finite length.

Element selection. A sequence has an element
corresponding to any non-negative integer index less
than its length, starting at 0 for the first element.

An element of a string
is itself a string!

(<map exp> for <name> in <iter exp> if <filter exp>)
• Evaluates to an iterable object.
• <iter exp> is evaluated when the generator expression
is evaluated.

• Remaining expressions are evaluated when elements are
accessed.

x = 2
Status Effect

•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x"
to object 2 in the first frame of
the current environment.

•No nonlocal statement
•"x" is bound locally

Re-bind name "x" to object 2 in the
first frame of the current env.

•nonlocal x
•"x" is bound in a non-local frame
•"x" also bound locally

SyntaxError: name 'x' is parameter
and nonlocal

•nonlocal x
•"x" is not bound in a non-local
frame

SyntaxError: no binding for nonlocal
'x' found

•nonlocal x
•"x" is bound in a non-local frame
(but not the global frame)

Re-bind "x" to 2 in the first non-
local frame of the current
environment in which it is bound.

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib
Found in cache

R(n) = �(f(n))

k1 · f(n) � R(n) � k2 · f(n)

n: size of the problem
R(n): Measurement of some resource used (time or space)

means that there are constants k1 and k2 such that

for sufficiently large values of n.
�(n2)�(n3)�(bn) �(n) �(log n) �(1)

>>> suits = ['heart', 'diamond', 'spade', 'club']
>>> from unicodedata import lookup
>>> [lookup('WHITE ' + s.upper() + ' SUIT') for s in suits]
['♡', '♢', '♤', '♧']

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

Unlike generator expressions, the map expression is
evaluated when the list comprehension is evaluated.

A function with a
parent frame

The parent contains
local state

Every call changes
the balance

• Tuples are immutable sequences.
• Lists are mutable sequences.
• Dictionaries are unordered collections

of key-value pairs.
Dictionary keys do have two restrictions:
• A key of a dictionary cannot be an object of a

mutable built-in type.
• Two keys cannot be equal. There can be at most

one value for a key.

Generator expressions

List comprehensions

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to
pre-existing bindings in an enclosing scope.

Names listed in a nonlocal statement must not collide
with pre-existing bindings in the local scope.

Effect: Future assignments to that name change its
pre-existing binding in the first non-local frame of
the current environment in which that name is bound.

nonlocal <name> , <name 2>, ...

Python Docs: an
"enclosing scope"

Python pre-computes which frame contains each name before
executing the body of a function.
Therefore, within the body of a function, all instances of a
name must refer to the same frame.

Local assignment

Mutable values can be changed without a nonlocal statement.

Name-value binding
cannot change

Mutable value
can change

>>> a = Account('Jim')
>>> b = Account('Jack')

>>> a is a
True
>>> a is not b
True

Every object that is an instance of a user-defined class
has a unique identity:

Identity testing is performed by "is" and "is not" operators.
Binding an object to a new name using assignment does not create
a new object: >>> c = a

>>> c is a
True

 def pig_latin(w):
 if starts_with_a_vowel(w):
 return w + 'ay'
 return pig_latin(w[1:] + w[0])

 def starts_with_a_vowel(w):
 return w[0].lower() in 'aeiou'

• The def statement header is
similar to other functions
• Conditional statements check
for base cases
• Base cases are evaluated
without recursive calls
• Typically, all other cases are
evaluated with recursive calls

CS 61A Midterm 2 Study Guide – Page 2

•A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.

•Statements in the <suite> create attributes of the class.

class <name>(<base class>):
 <suite>

<expression> . <name>To evaluate a dot expression:
1. Evaluate the <expression> to the left of the dot, which yields

the object of the dot expression.
2. <name> is matched against the instance attributes of that object;

if an attribute with that name exists, its value is returned.
3. If not, <name> is looked up in the class, which yields a class

attribute value.
4. That value is returned unless it is a function, in which case a

bound method is returned instead.

 class Account(object):

 interest = 0.02

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

Class attribute Constructor

Methods

Assignment statements with a dot expression on their left-hand
side affect attributes for the object of that dot expression
• If the object is an instance, then assignment sets an

instance attribute
• If the object is a class, then assignment sets a class

attribute

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.8
>>> jim_account.interest
0.8
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.8

 class CheckingAccount(Account):
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

Base class

To look up a name in a class:
1.If it names an attribute in the

class, return the attribute value.
2.Otherwise, look up the name in the

base class, if there is one.

>>> ch = CheckingAccount('T')
>>> ch.interest
0.01
>>> ch.deposit(20)
20
>>> ch.withdraw(5)
14 class SavingsAccount(Account):

 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

 class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

 class ComplexRI(object):
 def __init__(self, real, imag):
 self.real = real
 self.imag = imag
 @property
 def magnitude(self):
 return (self.real ** 2 + self.imag ** 2) ** 0.5

Special decorator: "Call this
function on attribute look-up"

Type dispatching: Define a different function for each
possible combination of types for which an operation is valid

 def iscomplex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def isrational(z):
 return type(z) == Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

 def add_by_type_dispatching(z1, z2):
 """Add z1 and z2, which may be complex or rational."""
 if iscomplex(z1) and iscomplex(z2):
 return add_complex(z1, z2)
 elif iscomplex(z1) and isrational(z2):
 return add_complex_and_rational(z1, z2)
 elif isrational(z1) and iscomplex(z2):
 return add_complex_and_rational(z2, z1)
 else:
 add_rational(z1, z2)

Converted to a
real number (float)

 def coerce_apply(operator_name, x, y):
 tx, ty = type_tag(x), type_tag(y)
 if tx != ty:
 if (tx, ty) in coercions:
 tx, x = ty, coercions[(tx, ty)](x)
 elif (ty, tx) in coercions:
 ty, y = tx, coercions[(ty, tx)](y)
 else:
 return 'No coercion possible.'
 key = (operator_name, tx)
 return coerce_apply.implementations[key](x, y)

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations

 class Rlist(object):

 class EmptyList(object):
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

 def __len__(self):
 return 1 + len(self.rest)

 def __getitem__(self, i):
 if i == 0:
 return self.first
 return self.rest[i-1]

A recursive
call

The base
case

 class Tree(object):
 def __init__(self, entry,
 left=None,
 right=None):
 self.entry = entry
 self.left = left
 self.right = right

def count_entries(tree):
 if tree is None:
 return 0
 left = count_entries(tree.left)
 right = count_entries(tree.right)
 return 1 + left + right

 def map_rlist(s, fn):
 if s is Rlist.empty:
 return s
 rest = map_rlist(s.rest, fn)
 return Rlist(fn(s.first),rest)

When a class is called:
1. A new instance of that class is created:
2. The constructor __init__ of the class is called with the

new object as its first argument (called self), along with
additional arguments provided in the call expression.

>>> a = Account('Jim')

 class Account(object):
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

To look up a name in a class.
1. If it names an attribute in the class, return the attribute value.
2. Otherwise, look up the name in the base class, if there is one.

tom_account.interest = 0.08

But the name (“interest”)
is not looked up

Attribute
assignment

statement adds
or modifies

the “interest”
attribute of
tom_account

Instance
Attribute

Assignment
:

This expression
evaluates to an object

 def make_instance(cls):
 def get_value(name):
 if name in attributes:
 return attributes[name]
 else:
 value = cls['get'](name)
 return bind_method(value, instance)
 def set_value(name, value):
 attributes[name] = value
 attributes = {}
 instance = {'get': get_value, 'set': set_value}
 return instance

The class of the instance

Look up the name
in the class

Match name against
instance attributes

Assignment affects
instance attributes

 def bind_method(value, instance):
 if callable(value):
 def method(*args):
 return value(instance, *args)
 return method
 else:
 return value
 def make_class(attributes={}, base_class=None):
 def get_value(name):
 if name in attributes:
 return attributes[name]
 elif base_class is not None:
 return base_class['get'](name)
 def set_value(name, value):
 attributes[name] = value
 def new(*args):
 return init_instance(cls, *args)
 cls = {'get': get_value, 'set': set_value, 'new': new}
 return cls

Class attribute lookup

Common dispatch
dictionary pattern

 def init_instance(cls, *args):
 instance = make_instance(cls)
 init = cls['get']('__init__')
 if init is not None:
 init(instance, *args)
 return instance

Special constructor
name is fixed here

Dispatch dictionary

def make_account_class():
 interest = 0.02
 def __init__(self, account_holder):
 self['set']('holder', account_holder)
 self['set']('balance', 0)
 def deposit(self, amount):
 new_balance = self['get']('balance') + amount
 self['set']('balance', new_balance)
 return self['get']('balance')
 ...
 return make_class(locals())
Account = make_account_class()

Valid if these
are None or a
Tree instance

A valid
tree has
no cycles!

