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for <name> in <expression>:
    <suite>
1. Evaluate the header <expression>, which must yield an 

iterable value.
2. For each element in that sequence, in order:

A. Bind <name> to that element in the local environment.
B. Execute the <suite>.

A range is a sequence of consecutive integers.*

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

range(-2, 2)
>>> city = 'Berkeley'
>>> len(city)
8
>>> city[3]
'k'

Length. A sequence has a finite length.

Element selection. A sequence has an element 
corresponding to any non-negative integer index less 
than its length, starting at 0 for the first element.

An element of a string 
is itself a string!

(<map exp> for <name> in <iter exp> if <filter exp>)
• Evaluates to an iterable object.
• <iter exp> is evaluated when the generator expression 
is evaluated.

• Remaining expressions are evaluated when elements are 
accessed.

x = 2
Status Effect

•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x" 
to object 2 in the first frame of 
the current environment.

•No nonlocal statement
•"x" is bound locally

Re-bind name "x" to object 2 in the 
first frame of the current env.

•nonlocal x
•"x" is bound in a non-local frame
•"x" also bound locally

SyntaxError: name 'x' is parameter 
and nonlocal

•nonlocal x
•"x" is not bound in a non-local 
frame

SyntaxError: no binding for nonlocal 
'x' found

•nonlocal x
•"x" is bound in a non-local frame 
(but not the global frame)

Re-bind "x" to 2 in the first non-
local frame of the current 
environment in which it is bound.

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib
Found in cache

R(n) = �(f(n))

k1 · f(n) � R(n) � k2 · f(n)

n: size of the problem
R(n): Measurement of some resource used (time or space)

means that there are constants k1 and k2 such that

for sufficiently large values of n.
�(n2)�(n3)�(bn) �(n) �(log n) �(1)

>>> suits = ['heart', 'diamond', 'spade', 'club']
>>> from unicodedata import lookup
>>> [lookup('WHITE ' + s.upper() + ' SUIT') for s in suits]
['♡', '♢', '♤', '♧']

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

Unlike generator expressions, the map expression is 
evaluated when the list comprehension is evaluated.

A function with a 
parent frame

The parent contains 
local state

Every call changes 
the balance

• Tuples are immutable sequences.
• Lists are mutable sequences.
• Dictionaries are unordered collections 

of key-value pairs.
Dictionary keys do have two restrictions:
• A key of a dictionary cannot be an object of a 

mutable built-in type.
• Two keys cannot be equal. There can be at most 

one value for a key.

Generator expressions

List comprehensions

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to 
pre-existing bindings in an enclosing scope.

Names listed in a nonlocal statement must not collide 
with pre-existing bindings in the local scope.

Effect: Future assignments to that name change its 
pre-existing binding in the first non-local frame of 
the current environment in which that name is bound.

nonlocal <name> , <name 2>, ...

Python Docs: an 
"enclosing scope"

Python pre-computes which frame contains each name before 
executing the body of a function.
Therefore, within the body of a function, all instances of a 
name must refer to the same frame.

Local assignment

Mutable values can be changed without a nonlocal statement.

Name-value binding 
cannot change

Mutable value 
can change

>>> a = Account('Jim')
>>> b = Account('Jack')

>>> a is a
True
>>> a is not b
True

Every object that is an instance of a user-defined class 
has a unique identity:

Identity testing is performed by "is" and "is not" operators. 
Binding an object to a new name using assignment does not create 
a new object: >>> c = a

>>> c is a
True

    def pig_latin(w):
        if starts_with_a_vowel(w):
            return w + 'ay'
        return pig_latin(w[1:] + w[0])

    def starts_with_a_vowel(w):
        return w[0].lower() in 'aeiou'

• The def statement header is 
similar to other functions
• Conditional statements check 
for base cases
• Base cases are evaluated 
without recursive calls
• Typically, all other cases are 
evaluated with recursive calls
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•A class statement creates a new class and binds that class to 
<name> in the first frame of the current environment.

•Statements in the <suite> create attributes of the class.

class <name>(<base class>):
    <suite>

<expression> . <name>To evaluate a dot expression:
1. Evaluate the <expression> to the left of the dot, which yields 

the object of the dot expression.
2. <name> is matched against the instance attributes of that object; 

if an attribute with that name exists, its value is returned.
3. If not, <name> is looked up in the class, which yields a class 

attribute value. 
4. That value is returned unless it is a function, in which case a 

bound method is returned instead.

    class Account(object):

        interest = 0.02

        def __init__(self, account_holder):
            self.balance = 0
            self.holder = account_holder

        def deposit(self, amount):
            self.balance = self.balance + amount
            return self.balance

        def withdraw(self, amount):
            if amount > self.balance:
                return 'Insufficient funds'
            self.balance = self.balance - amount
            return self.balance

Class attribute Constructor

Methods

Assignment statements with a dot expression on their left-hand 
side affect attributes for the object of that dot expression
• If the object is an instance, then assignment sets an 

instance attribute
• If the object is a class, then assignment sets a class 

attribute

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.8
>>> jim_account.interest
0.8
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.8

    class CheckingAccount(Account):
        withdraw_fee = 1
        interest = 0.01
        def withdraw(self, amount):
            return Account.withdraw(self, amount + self.withdraw_fee)

Base class

To look up a name in a class:
1.If it names an attribute in the 

class, return the attribute value.
2.Otherwise, look up the name in the 

base class, if there is one.

>>> ch = CheckingAccount('T')
>>> ch.interest
0.01
>>> ch.deposit(20)
20
>>> ch.withdraw(5)
14    class SavingsAccount(Account):

        deposit_fee = 2
        def deposit(self, amount):
            return Account.deposit(self, amount - self.deposit_fee)

    class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
        def __init__(self, account_holder):
            self.holder = account_holder
            self.balance = 1           # A free dollar!

    class ComplexRI(object):
        def __init__(self, real, imag):
            self.real = real
            self.imag = imag
        @property
        def magnitude(self):
            return (self.real ** 2 + self.imag ** 2) ** 0.5

Special decorator: "Call this 
function on attribute look-up"

Type dispatching: Define a different function for each 
possible combination of types for which an operation is valid

    def iscomplex(z):
        return type(z) in (ComplexRI, ComplexMA)

    def isrational(z):
        return type(z) == Rational

    def add_complex_and_rational(z, r):
        return ComplexRI(z.real + r.numer/r.denom, z.imag)

    def add_by_type_dispatching(z1, z2):
        """Add z1 and z2, which may be complex or rational."""
        if iscomplex(z1) and iscomplex(z2):
            return add_complex(z1, z2)
        elif iscomplex(z1) and isrational(z2):
            return add_complex_and_rational(z1, z2)
        elif isrational(z1) and iscomplex(z2):
            return add_complex_and_rational(z2, z1)
        else:
            add_rational(z1, z2)

Converted to a
real number (float)

    def coerce_apply(operator_name, x, y):
        tx, ty = type_tag(x), type_tag(y)
        if tx != ty:
            if (tx, ty) in coercions:
                tx, x = ty, coercions[(tx, ty)](x)
            elif (ty, tx) in coercions:
                ty, y = tx, coercions[(ty, tx)](y)
            else:
                return 'No coercion possible.'
        key = (operator_name, tx)
        return coerce_apply.implementations[key](x, y)

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations

    class Rlist(object):

        class EmptyList(object):
            def __len__(self):
                return 0

        empty = EmptyList()

        def __init__(self, first, rest=empty):
            self.first = first
            self.rest = rest

        def __len__(self):
            return 1 + len(self.rest)

        def __getitem__(self, i):
            if i == 0:
                return self.first
            return self.rest[i-1]

A recursive 
call

The base 
case

    class Tree(object):
        def __init__(self, entry, 
                     left=None, 
                     right=None):
            self.entry = entry
            self.left = left
            self.right = right

def count_entries(tree):
    if tree is None:
        return 0
    left = count_entries(tree.left)
    right = count_entries(tree.right)
    return 1 + left + right

    def map_rlist(s, fn):
        if s is Rlist.empty:
            return s
        rest = map_rlist(s.rest, fn)
        return Rlist(fn(s.first),rest)

When a class is called:
1. A new instance of that class is created: 
2. The constructor __init__ of the class is called with the 

new object as its first argument (called self), along with 
additional arguments provided in the call expression.

>>> a = Account('Jim')

    class Account(object):
        def __init__(self, account_holder):
            self.balance = 0
            self.holder = account_holder

To look up a name in a class.
1. If it names an attribute in the class, return the attribute value.
2. Otherwise, look up the name in the base class, if there is one.

tom_account.interest = 0.08

But the name (“interest”) 
is not looked up

Attribute 
assignment 

statement adds 
or modifies 

the “interest” 
attribute of 
tom_account

Instance 
Attribute

Assignment
:

This expression 
evaluates to an object

    def make_instance(cls):
        def get_value(name):
            if name in attributes:
                return attributes[name]
            else:
                value = cls['get'](name)
                return bind_method(value, instance)
        def set_value(name, value):
            attributes[name] = value
        attributes = {}
        instance = {'get': get_value, 'set': set_value}
        return instance

The class of the instance

Look up the name 
in the class

Match name against 
instance attributes

Assignment affects 
instance attributes

    def bind_method(value, instance):
        if callable(value):
            def method(*args):
                return value(instance, *args)
            return method
        else:
            return value
    def make_class(attributes={}, base_class=None):
        def get_value(name):
            if name in attributes:
                return attributes[name]
            elif base_class is not None:
                return base_class['get'](name)
        def set_value(name, value):
            attributes[name] = value
        def new(*args):
            return init_instance(cls, *args)
        cls = {'get': get_value, 'set': set_value, 'new': new}
        return cls

Class attribute lookup

Common dispatch 
dictionary pattern

    def init_instance(cls, *args):
        instance = make_instance(cls)
        init = cls['get']('__init__')
        if init is not None:
            init(instance, *args)
        return instance

Special constructor 
name is fixed here

Dispatch dictionary

def make_account_class():
    interest = 0.02
    def __init__(self, account_holder):
        self['set']('holder', account_holder)
        self['set']('balance', 0)
    def deposit(self, amount):
        new_balance = self['get']('balance') + amount
        self['set']('balance', new_balance)
        return self['get']('balance')
    ...
    return make_class(locals())
Account = make_account_class()

Valid if these 
are None or a 
Tree instance

A valid 
tree has 
no cycles!


