
CS 61A Structure and Interpretation of Computer Programs

Fall 2011 Midterm Exam 2
INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except a one-page crib sheet of your
own creation and the two official 61A midterm study guides.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person
to your left

Name of the person
to your right

All the work on this
exam is my own.
(please sign)

For staff use only

Q. 1 Q. 2 Q. 3 Q. 4 Total

/12 /10 /12 /16 /50

2

1. (12 points) Mutation and Non-Local Assignment

The Berkeley Banking Commune only accepts Berkeley Bucks. Each valid “buck” has a unique serial number.
The bank tracks these serial numbers to make sure that nobody is photocopying its bucks.

(a) (4 pt) The higher-order function make deposit returns a single-argument function deposit that takes a
Python list of serial numbers. If all serial numbers ever deposited to that function are unique, deposit
returns the number of bucks ever deposited. If a duplicate serial number is ever deposited, deposit will
forever return the string ’Fraud’. Fill in the deposit definition below. Do not include any unnecessary
nonlocal statements. Do not include any additional return statements; one is provided for you.

def make_deposit():

"""Return a deposit function.

>>> d1, d2 = make_deposit(), make_deposit()

>>> d1([1, 3])

2

>>> d1([7, 7])

’Fraud’

>>> d1([8])

’Fraud’

>>> d2([2, 4, 6])

3

>>> d2([1, 3, 5])

6

>>> d2([4])

’Fraud’

"""

fraud = False

contents = []

def deposit(bucks):

if fraud:

return ’Fraud’

return len(contents)

return deposit

Login: 3

(b) (6 pt) Complete the environment diagram for the program in the box below. You do not need to draw
an expression tree. A complete answer will:

• Complete all missing arrows. Arrows to the global frame can be abbreviated by small globes.

• Add all local frames created by applying user-defined functions.

• Add all missing names in frames.

• Add all final values referenced by frames. Represent tuple values using box-and-pointer notation.
Issue

2

big(b):
 if b == 0:
 return 2
 return 3 + big(b[0])

make_bank():
 bucks = 0
 def issue(n):
 nonlocal bucks
 bucks = (bucks, n)
 return big(bucks)
 return issue

def big(b):
 if b == 0:
 return 2
 return 3 + big(b[0])

def make_bank():
 bucks = 0
 def issue(n):
 nonlocal bucks
 bucks = (bucks, n)
 return big(bucks)
 return issue

s = make_bank()
s(1)

issue(n):
 nonlocal bucks
 bucks = (bucks, n)
 return big(bucks)

(c) (2 pt) After executing the program above, what would the expression s(4) evaluate to? If evaluating this
expression causes an error, write “error.” If evaluating this expression would take forever, write “infinite.”

4

2. (10 points) List Processing

Assume that you have started Python 3 and executed the following statements:

from operator import add

def baby(oh):

baby = oh

for b in baby:

baby[0] = b

return baby

bieber = [’om’, ’nom’, ’nom’]

counts = [1, 2, 3]

nums = counts

nums.append(4)

For each of the following expressions, write the repr string (i.e., the string printed by Python interactively) of
the value to which it evaluates in the current environment . If evaluating the expression causes an error, write
“error.” Any changes made to the environment by the expressions below will affect the subsequent expressions.

(a) (2 pt) baby(bieber)

(b) (2 pt) bieber[0:2]

(c) (2 pt) counts is nums

(d) (2 pt) counts is add([1, 2], [3, 4])

(e) (2 pt) tuple(map(baby, (nums, counts)))

Login: 5

3. (12 points) Object-Oriented Programming

(a) (2 pt) Louis Reasoner wants to define a Person class:

class Person(object):

name = None

def __init__(self, name):

Person.name = name

def greet(self):

return "Hello, my name is " + self.name

Alyssa P. Hacker, sees a problem. Circle all appropriate criticisms of this implementation.

(A) Every Person’s name will be the equal to the most recently created Person’s name.

(B) Instantiating a Person will cause an error.

(C) Every Person’s name will be None.

(D) Invoking greet on a person instance will cause an error.

(b) (2 pt) Consider the following simple class definition.

class Dog(object):

def bark(self):

print("woof!")

One day, while using this class, Louis Reasoner decides he wants his dog, Fido, to bark differently:

>>> fido = Dog()

>>> fido.bark = "bow wow!"

Ben Bitdiddle quickly points out that this won’t work. “bark is supposed to be a method, not a string!”
So Louis Reasoner attempts to reset the bark method to what it was before:

>>> fido.bark = Dog.bark

Ben replies, “I don’t think your fix is right either!” Circle all appropriate statements about this final
assignment statement.

(A) Executing this assignment statement will cause an error.

(B) After this assignment, invoking fido.bark() will cause an error.

(C) This assignment statement will have no effect at all.

(D) None of the above criticisms are valid.

6

(c) (3 pt) Cross out statements below so that the expression N().r() evaluates to 1.

class M(object):

p = 2

q = True

def r(self):

if self.q:

return self.p

return self.r() - 1

class N(M):

p = 1

q = False

def r(self):

return self.p + 1

(d) (2 pt) Consider the following class definition using our implemented object system (below-the-line).

def make_foo_class():

def __init__(self, a):

self[’set’](’a’, a)

def someday(self):

return "we will go " + str(attributes[’a’])

attributes = {’__init__’: __init__,

’someday’: someday,

’a’: 42}

return make_class(attributes, None)

Foo = make_foo_class()

Circle all equivalent class definitions below, among these options that use Python’s built-in object system.

class Foo:

a = 42

def __init__(self, a):

self.a = a

def someday(self):

return "we will go " + str(Foo.a)

class Foo:

def __init__(self, a):

self.a = a

def someday(self):

return "we will go " + str(self.a)

class Foo:

a = 42

def __init__(self, a):

self.a = a

def someday(self):

return "we will go " + str(a)

Login: 7

(e) (3 pt) Louis Reasoner decides to modify the seventh line of the body of make instance in his implemen-
tation of an object system. He also implements a Person class.

1: def make_instance(cls):

2: def get_value(name):

3: if name in attributes:

4: return attributes[name]

5: else:

6: value = cls[’get’](name)

7: return value # CHANGED FROM: return bind_method(value, instance)

8: def set_value(name, value):

9: attributes[name] = value

10: attributes = {}

11: instance = {’get’ : get_value, ’set’ : set_value}

12: return instance

13:

14: def make_person_class():

15: def __init__(self, name):

16: self[’set’](’name’, name)

17: Person[’set’](’population’, Person[’get’](’population’) + 1)

18: def greet(self):

19: return "Hello, my name is " + self[’get’](’name’)

20: Person = make_class({’__init__’: __init__,

21: ’greet’: greet,

22: ’population’: 0})

23: return Person

Circle any of the following lines that will cause an error using this implementation.

>>> Person = make_person_class()

>>> yakko = Person[’new’](’yakko’)

>>> yakko[’get’](’name’)

>>> yakko[’get’](’greet’)()

>>> yakko[’get’](’population’)

8

4. (16 points) Defining Functions Without Iteration

ANSWER THESE QUESTIONS WITHOUT ANY FOR OR WHILE STATEMENTS

(a) (3 pt) Implement the function make triangle area that defines a relation among three connectors, the
base b, height h, and area a of a triangle, so that a = 1

2 · b · h. You may assume that the functions
make connector, multiplier, and constant are defined for you as they were in lecture. The following
results should be printed using your solution.

>>> a, b, h = [make_connector(n) for n in (’area’, ’base’, ’height’)]

>>> make_triangle_area(a, b, h)

>>> a[’set_val’](’user’, 75)

area: 75

>>> b[’set_val’](’user’, 15)

base: 15

height: 10

def make_triangle_area(a, b, h):

(b) (4 pt) Write a function overlap that takes two strings word1 and word2 and returns the maximum
overlap between the end of word1 and the beginning of word2. Assume both strings have the same length.

>>> overlap(’ball’, ’ball’)

’ball’

>>> overlap(’pirate’, ’teepee’)

’te’

>>> overlap(’fish’, ’bowl’)

’’

def overlap(word1, word2):

Login: 9

ANSWER THESE QUESTIONS WITHOUT ANY FOR OR WHILE STATEMENTS

(c) (3 pt) Complete the function listify that takes as an argument an instance of either (i) the built-in
list class or (ii) the user-defined Rlist class from lecture. listify returns a list containing the same
elements as its argument. Use type dispatching and a call to listify rlist.

>>> r = Rlist(’He will knock’, Rlist(3, Rlist(’times’)))

>>> s = ["fezzes", "are", "cool"]

>>> listify(r)

["He will knock", 3, "times"]

>>> listify(s)

["fezzes", "are", "cool"]

def listify_rlist(r, s):

"""Fill list s with the contents of Rlist r."""

if r is not Rlist.empty:

s.append(r.first)

listify_rlist(r.rest, s)

def listify(seq):

(d) (2 pt) Define a mathematical function f(n) such that calling listify(s) on an Rlist instance s takes
Θ(f(n)) steps. Assume that s is an Rlist of length n and each element of s is itself an Rlist of length
n. Assume that the append method for list takes a constant number of steps.

f(n) =

10

ANSWER THESE QUESTIONS WITHOUT ANY FOR OR WHILE STATEMENTS

Consider the binary Tree class below, which has no entry attribute.

class Tree(object):

"""A binary tree with no entries."""

def __init__(self, left=None, right=None):

self.left = left

self.right = right

a = Tree(None, Tree(Tree(), Tree(None, Tree())))

b = Tree(None, Tree())

c = Tree(None, Tree(None, Tree()))

d = Tree(Tree(), Tree())

Trees

4

a
b c d

True True False

(a,b) (a,c) (a,d)

pruned
6

(c) (3 pt) Cross out statements below so that the expression N().r() evaluates to 1. You must cross out
whole statements. If you cross out the header of a conditional statement, you must cross out its suite too.

class M(object):

p = 2

q = True

def r(self):

if self.q:

return self.p

return self.r() - 1

class N(M):

p = 1

q = False

def r(self):

return self.p + 1

(d) (3 pt) Consider the following class definition using our implemented object system (below-the-line).

def make_foo_class():

def __init__(self, a):

self[’set’](’a’, a)

def someday(self):

return "we will go " + str(attributes[’a’])

attributes = {’__init__’: __init__, ’someday’: someday, ’a’: 42}

return make_class(attributes, None)

Foo = make_foo_class()

Circle all equivalent class definitions below, among these options that use Python’s built-in object system.

class Foo:

a = 42

def __init__(self, a):

self.a = a

def someday(self):

return "we will go " + str(Foo.a)

class Foo:

def __init__(self, a):

self.a = a

def someday(self):

return "we will go " + str(self.a)

class Foo:

a = 42

def __init__(self, a):

self.a = a

def someday(self):

return "we will go " + str(a)

d

True

True

False

True False

False

(a,b) (a,c) (a,d)

pruned

contains

(e) (4 pt) Write a function pruned that takes two Tree arguments t1 and t2 and returns whether t2 is a
pruned version of t1. t2 is a pruned version of t1 if all paths from the root of t2 are also valid paths from
the root of t1. A path is an ordered sequence of branch selections (e.g., right, right, left). Your
base case(s) should compare an input to None.

def pruned(t1, t2):

