CS3L Fall 2008 Quest Solutions

Legend:

AG: Assessment goal. Why are we asking this question? "To test understanding of..."
NPC: No partial credit.
GS: Grading scale.

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrsg

Question 0: AG: Knowing how to move beyond the simplest representations allows you do
more things, such as riding a bike without understanding the physics behind it (Ask your
physics GSI for details, it's surprisingly complicated.)

ABSTRACTION. This is not only the big idea here, but like the question says, this is the big
idea in every class in CS.

GS: 2 pts, NPC.

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrsg

QUEStlon 1 1 AG: Details of words and sentences, as well as or and and as a true
and false finder, respectively.

a)The first one returns c. So the way to do these things is to go from the inside out.
(butlast cheers) returns cheer, the first of which is c. The 1ast of cis still e. For this

one, we also accepted 'c and "c". For future reference, however, 'c will be considered
incorrect because 'c is the same as (quote c). This actually does not make sense, since
the first procedure returns a word, not a call to another procedure.

Error! Remember, bf returns a sentence with the number 7, although first returns the
number 10. So, the call is (- 10 (7)). This is a not a number error, since sentences are
not numbers.

maybe. This was a very commonly missed question. One mistake many students made is
that they forgot that or was a true finder. That means, it stops execution as soon as it finds
true. (or #f #f #t BIGERROR) returns #t, and (or #f #f 'big-word BIGERROR) returns
big-word, since 'big-word is a true value, which gets returned. This accounts for not being
a procedure with no calls, as well as for maybe returned instead of true or false.

GS: 1 pt each, NPC, except the second one which was 1/2 point each for answer and
explaination.

b) (sentence (bl (sentence (word 'word (quote s)) 'bf)))

(sentence (bl (sentence (word 'word 's) 'bf)))
(sentence (bl (sentence 'words 'bf)))
(sentence (bl ' (words bf))

(sentence ' (words))

(words)
so it returns (words)

GS: 3 pts for all correct.

-2 for not using all of the words provided

-2 for major parens mistake

-1 for minor parens mistake

-1 for something like ('word ... That open parenthesis doesn't have a quote in front of it,
which means that the next thing should evaluate to a procedure. However 'word is a word,
not a procedure.

-1 for quoting the s (quote 's)

-1 for no quote on the second word or on bf

-1 for (bf ' ()) There isn't a first item in the sentence ' () and so the (bf ' ()) results in
an error

-1 for returning the wrong answer

-1 for calling the procedure word on a sentence. For example (word 'word (quote (s)) is
like saying (word 'word ' (s)) but the procedure word can only take in words as
arguments.

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrg

Que5t|0n 2 AG: Logic, debugging, cond

Calling (exactly-one? false false) should return false but instead returns true.
Changing line # 4 to (else false) fixes the bug so it now works as advertised. There are
also many other solutions that are possible.

The big question that most people had was what did line 1 did. For each of the cond cases,
people are used to a call like ((number? 3) 'do-something). Remeber, scheme interprets
that into (true 'do-something). Here, the a simply gets evaluated to true or false. Also,
line 2 never gets called, since if a were true, it would evaluate line 1 instead. For that
reason, line 3 is only evaluated if b is true (and a is false), which should return true.

It should also be noted that many students treated and as if it were equivalent to equal?,
which it is not: (and false false) is false, whereas (equal? false false) iS true.

GS:
6 points if entirely correct.
1 point for each blank

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrsg

QUEStlon 3: rc: Abstraction, data structures

(define (make-bag items weight) (sentence 'bag-containing items 'weighs
weight))

(define (bag-items bag) (bl (bl (bf bag))))

(define (bag-weight bag) (last bag))

We got a lot of questions on what it each of them should do. This question calls on you to
write a constructor as well as two accessors (or getters). Many people used item to get the
items, but remember, since items is a SENTENCE objects, you must use something that
returns a sentence, like butlast and butfirst.

Here are some example calls.

> (define *sample-bag* (make-bag ' (banana pineapple) 20))
sample-bag

> (bag-items *sample-bag¥*)

(banana pineapple)

> (bag-weight *sample-bag*)

20

Another common mistake was using make-bag in the accessors.
(define (bag-items bag) (bl (bl (bf (make-bag items weight)))))

In this case, bag is unused, so you aren't accessing the information about items from bag.
Only one point was deducted for this mistake.

GS:

2 points for make-bag.

3 points for bag-items, one for each of the butlast and butfirsts
1 point for bag-weight.

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrg

Question 4:

AG: The Case Study and the valuable lesson that one can re-use software,
you only need converters (written using constructors & selectors)?

;; Solution 1
(define (iso-century-day-span iso-datel iso-date2)
(century-day-span (iso-date->date iso-datel)
(iso-date->date iso-date2)))

;7 QUICK AND DIRTY WAY
;; with data abstraction violations abounding
;5 (you'll learn later about these) and no constructors or selectors
(define (iso-date->date iso-date)
(se (bf iso-date) (first iso-date)))

;; Solution 2

;; CORRECT WAY

(define (make-date month day year) (se month day year)) ;; constructor
(define (iso-month-name iso-date) (first (bf iso-date))) ;; selector

(define (iso-date-in-month iso-date) (first (bf (bf iso-date)))) ;; selector

(define (iso-year iso-date) (first iso-date)) ;; selector

;; INPUT : iso-date (e.g., (90 january 3))
;; RETURNS : date (e.g., (january 3 90))
;; EXAMPLE : (iso-date->date ' (90 january 3)) ==> (january 3 90)
(define (iso-date->date iso-date)
(make-date (iso-month-name iso-date)
(iso-date-in-month iso-date)
(iso-year iso-date)))

GS: (6 pts)

6 pts : perfect

5 pts : one trivial mistake

3 pts : get "the idea" but bigger mistakes
0 pts : trying to write century-day-span

	CS3L Fall 2008 Quest Solutions
	
	Legend:

