
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Fall 2008 Instructor: Dan Garcia 2008-09-22

CS3L Quest

Personal Information

Last name

First Name

Last two letters of your login: cs3-

Student ID Number

The name of the TA for the lab you attend

Name of the person to your Left

Name of the person to your Right

All the work is my own. I had no prior knowledge of the
exam contents nor will I share the contents with others

in CS3L who have not taken it yet. (please sign)

Instructions
• Please turn off all cell phones.

Remove all hats & headphones.

• We will drop your lowest score for questions 1

through 4. Question 0 is compulsory.

• You have one hour to complete this quest.

It is open book and open notes, no computers.

• Partial credit will be given for incomplete / wrong

answers, so please write down as much of the
solution as you can.

• Use true instead of #t , and false instead of

#f, since they are equivalent. Handwritten #t
and #f unfortunately look too much alike.

• For these questions you only need the functions

from the following sections (listed in the back
page of the book): Words and Sentences,
Arithmetic, True and False and Variables.

• Please comment on the exam below. Rate its

difficulty (0 = cake, 5 = impossible), fairness (0 =
unfair, 5 = fair), and feel free to add any other
comments that come to mind.

• Difficulty (0=easy, 5=hard):
• Fairness (0=unfair, 5=fair):
• Other comments? (write here)

Grading Results

Question

Max.
Points

Points
Earned

0 2

1 6

2 6

3 6

4 6

Subtotal 26

Min (of 1-4) 6

Total 20

Comments:

Name: ______________________________________

Page 2 of 3

Question 0: “Say, what’s the BIG idea?!” (2 pts, mandatory)
In one word, what is the “big idea” you’ll learn in CS3L?
It is fundamental to all computer science & engineering.
(It allows you to drive a car without knowing how it works.)

Question 1: If it smells that good, it must be potpourri… (6 pts)

a) Fill in the blanks. If the expression returns an error, write ERROR and explain why:

(last (first (butlast 'cheers))) 

(- (first '(10 9)) (bf '(8 7))) 

(or #f (and 'true (not 'false)) 'maybe not) 

b) Add only quotes and parentheses to the following line to return the sentence shown.

sentence bl sentence word word quote s bf  (words)

Question 2: Can you find debug? (6 pts)
We’ve tried to write exactly-one? that takes two Boolean inputs and returns true if (and only if)
exactly one of its inputs is true. Unfortunately, we have a bug. Fill in the sentence; when writing
a Boolean value, write true or false, not #t or #f, since those look remarkably alike.

 a | b | (exactly-one? a b)
 (define (exactly-one? a b) ------+-------+-------------------
1 (cond (a (not b)) false | false | false
2 ((and a b) true) false | true | true
3 ((or a b) true) true | false | true
4 (else true))) true | true | false

“Calling (exactly-one? ______ ______) should return ______ but instead returns ______.

Changing line # __ to ______________________ fixes the bug so it now works as advertised.”

Question 3: This question is in the bag! (6 pts)
A bag is a new data type consisting of all its items (a sentence of objects) and its total weight.
Your job is to finish writing the constructor make-bag and the selectors bag-items and bag-weight.

(define (make-bag items weight) (______________ 'bag-containing items 'weighs weight))

(define (bag-items bag) ___)

(define (bag-weight bag) ___)

Name: ______________________________________

Page 3 of 3

Question 4: Difference Between Dates (6 pts)

You have already written century-day-span for the first mini-project. We would like you to write
iso-century-day-span that extends century-day-span and the Difference Between Dates case
study to handle dates between January 1st 1900 to December 31st 1999 in a modified format, we’ll
call iso, i.e., (year month day). For example, January 3, 1990 would be written '(90 january 3).
You may assume you have already written the function century-day-span. You may not
change any definitions from the case study, you may only add to them. To refresh your
memory, the century-day-span procedure spec is re-printed below. Here are some example calls
to iso-century-day-span:

(iso-century-day-span ‘(90 january 3) ‘(90 january 9))  7
(iso-century-day-span ‘(89 march 30) ‘(90 february 2))  310
(iso-century-day-span ‘(84 january 1) ‘(85 january 1))  367
(iso-century-day-span ‘(1 january 1) ‘(5 january 1))  1462

You only need to write iso-century-day-span & any helpers you’ll need.

(define (iso-century-day-span iso-date1 iso-date2)

(Here is a copy of the homework description for century-day-span, in case that helps)

Write a procedure century-day-span that takes two dates as arguments, and returns the number of days between them,
including the argument dates themselves. Assume that the first argument date is earlier than the second.

Each date is a three-word sentence representing a legal date between January 1, 1901 and December 31, 1999. The
first word is a month name (one of january, february, ..., december). The second is an integer between 1 and the number
of days in the specified month, inclusive. The third is an integer between 1 and 99, inclusive; it represents a year in
the 20th century.

Your procedure must be able to deal with leap years. A leap year between 1901 and 1999 is any year that’s divisible by
4; its February has 29 days rather than 28, and therefore it has 366 days rather than 365. E.g.,

(century-day-span '(january 3 90) '(january 9 90))  7
(century-day-span '(march 30 89) '(february 2 90))  310
(century-day-span '(january 1 84) '(january 1 85))  367
(century-day-span '(january 1 1) '(january 1 5))  1462

