
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Fall 2008 Instructor: Dan Garcia 2008-10-29

CS3L Midterm
(define (recursion) (recursion))

Personal Information

Last name

First Name

Student ID Number

Login cs3-

The name of your TA (please circle) Andrew Colleen DavidW DavidZ Gilbert George

Name of the person to your Left

Name of the person to your Right

All the work is my own. I had no prior knowledge of the
exam contents nor will I share the contents with others

in CS3 who have not taken it yet. (please sign)

Instructions
• Please turn off all cell phones.

Remove all hats & headphones.

• You have three hours to complete this midterm.

It is open book and open notes, no computers.

• Partial credit will be given for incomplete / wrong

answers, so please write down as much of the
solution as you can.

• Use true instead of #t , false instead of #f,

since they are equivalent. Handwritten #t and #f
unfortunately look too much alike…

• Feel free to write λ instead of lambda.

• Write the difficulty and fairness ratings in the

boxes to the right and please add additional
comments below.

Grading Results

Question Max.
Pts

Points
Earned

Difficulty
(0=easy
5=hard)

Fairness
(0=fair

5=unfair)

1 5

2 7

3 8

4 10

5 10

Total 40

Please comment above & left:

Login: cs3-_____

Page 2 of 5

Question 1: Grown in the USA! It was … Grown in the USA! (5 pts)
You’re given the following helper functions:

• a procedure cost that returns the price of an item
• a predicate food? that returns true when an item is edible
• a predicate usa? that returns true when an item is made/grown in the USA

Write cost-of-usa-food, a function to calculate the total cost of the food grown in the
USA from a sentence of items in a shopping list shoplist.

• You may not define any additional helper procedures
• You may not use lambda or any explicit recursion
• You may only use higher-order functions (as well as cost, food?, usa? and

standard scheme built-in functions)

(cost 'apple)  1
(cost 'banana)  3
(cost 'orange)  5
(cost 'pencil)  10

(food? 'apple)  true
(food? 'banana)  true
(food? 'orange)  true
(food? 'pencil)  false

(usa? 'apple)  true
(usa? 'banana)  false
(usa? 'orange)  true
(usa? 'pencil)  true

(cost-of-usa-food '(apple banana orange pencil))  6 ;; apple + orange

(define (cost-of-usa-food shoplist)

 ___)

Question 2: Magical Mystery Function, step right this way… (7 pts)

(define (mystery x y)
 (lambda (arg)
 (first (x (word y arg)))))

What is the domain of mystery? (2 pts)

What is the range of mystery? (2 pts)

Show a call to mystery with the fewest characters in the blanks that returns cal.
Add only left paren(s) in the leftmost blank. (3 pts)

__________ mystery _______________________________________ 'stanford ___________
Left parens only

Remember: it’s not enough to say the domain or
range is simply “a function”. You have to describe
the domain and range of that function! (…and so

on if its domain/range is also a function)

Login: cs3-_____

Page 3 of 5

Question 3: Give me some love! XOXO (8 points)
You decide to write love, a function to chart how affectionate you are (i.e., what you
do) with your sweetie over the course of a given day (day 1 is your first day together,
day 2 is your second, etc.). It returns a (possibly long) word whose “alphabet” (i.e.,
letters used to build the word) is only: hugs (o), kisses (x), and just hanging out (-).
The function reverse-word is provided for you, and does what you’d imagine it does:
(reverse-word 'abcd)  dcba

(define (love day)
 (if (< day 3)
 '- ;; You just hang out for the first 2 days
 (word 'x
 (love (- day 1))
 '-
 (reverse-word (love (- day 2)))
 'o)))

a) What will you do on day 3? I.e., what will (love 3) return? If it is an error, say

what the error is. If it is an infinite loop, write “it never returns”. (1 pt)

b) What will you do on day 4? I.e., what will (love 4) return? If it is an error, say
what the error is. If it is an infinite loop, write “it never returns”. (2 pts)

c) Now let’s do some analysis of your long-term relationship. What are the first three
and last three things you do on day 9999? That is, what are the first three and last
three letters of (love 9999)? Fill in the blanks below. (2 pts)

 ________ ________ ________ . . . ________ ________ ________

d) love can return a long and seemingly random sequence of xs, os & -s. For each of

the following activities, circle either POSSIBLE or IMPOSSIBLE if it’s ever
possible to do these things someday. The first one is already done for you. (3 pts)

• POSSIBLE IMPOSSIBLE : "---" (Hang out three times in a row)

• POSSIBLE IMPOSSIBLE : "----" (Hang out four times in a row)

• POSSIBLE IMPOSSIBLE : "ox" (Hug immediately followed by a kiss)

• POSSIBLE IMPOSSIBLE : "oo" (Hug twice in a row)

Login: cs3-_____

Page 4 of 5

Question 4 : What I need now is a cold compress on my head… (10 points)
You notice that the word love returns often has lots of the same characters in a row,
e.g., …o--o---xx…). You decide to compress it by returning an equivalent sentence in
which you’ve replaced all consecutive letters (including just single letters) with the
consecutive number of them and the letter that’s repeated. You try to write compress,
but unfortunately, it has two bugs (you’ll need to find and fix). Fill the blanks in a-e.

;; compress
;;
;; INPUTS : A word, w
;; REQUIRES :
;; RETURNS : A sentence in which every consecutive sequence of letters in w
;; : is replaced by the number of consecutive letters and the letter
;; EXAMPLE : Note – these are NOT NECESSARILY return values for love!
;; : (compress 'xoooooo---x-)  (1 x 6 o 3 - 1 x 1 -)
;; : (compress '-----)  (5 -)

(define (compress w)
 (compress-helper (bf w) 1 (first w)))

(define (compress-helper w in-a-row letter)
 (cond
1 ((empty? w)
2 '())
3 ((equal? (first w) letter)
4 (compress-helper (bf w) (+ 1 in-a-row) letter))
5 (else
6 (se in-a-row
7 letter
8 (compress-helper (bf w) in-a-row letter)))))

a) Currently, (compress "") crashes. One option is to modify the code to handle it.

The other option is to __.

b) Complete the sentence below. (2 pts)

Currently, (compress 'xxx) returns _____________________ instead of (3 x).

Replacing line # ______ with ___________________________________ fixes the bug.

c) Let’s say you make the fix in part (b) above. There is one remaining bug. Fix it by
replacing a single line, as you did above, and also show the shortest sequence that
triggered the bug (and list the correct and buggy return values). After fixing both
bugs in (a) and (b), compress should work for all valid input. (5 pts)

Currently, (compress __________) returns _____________ instead of _____________.

To fix it, replace line # _____ with ___

d) Now, assume you’ve completely debugged compress. If the input to

compress has a count of 1000, what’s the longest count of its output? _________

e) Does compress-helper employ (circle one) TAIL or EMBEDDED recursion? (1 pt)

Login: cs3-_____

Page 5 of 5

Question 5 : Number 9… Number 9… Number 9… (10 points)

A number is divisible by 9 if it is 9, or if the sum of its digits is divisible by 9.

Let’s see, is the number 8888888889 divisible by 9? Well, is it 9? No, so let’s check if
the sum of the digits is divisible by 9. Let’s see, 8+8+8+8+8+8+8+8+8+9 = 81. Ok, is 81
divisible by 9? Well, is it 9? No, so let’s check if the sum of the digits is divisible by 9.
Let’s see, 8+1 = 9. Ok, is 9 divisible by 9? Well, is it 9? Yep! Then 8888888889 was
divisible by 9! Actually, we don’t really care about 9-divisibility of a general number.
We first want to know how many recursive steps a multiple of 9 took until it got to 9.
8888888889819 was 2 steps. Then want to know, for the first n multiples of 9
(9, 18, 27, …), how many steps each took through that algorithm until it was 9.

(define (9? n) (= n 9))
(define (9* n) (* n 9))
(add-digits 8888888889)  81
(repeateds-until add-digits 9? 9)  0
(repeateds-until add-digits 9? 81)  1
(repeateds-until add-digits 9? 8888888889)  2
(9s 1)  (9)
(9s 15)  (9 18 27 36 45 54 63 72 81 90 99 108 117 126 135)
(steps-until-9 15)  (0 1 1 1 1 1 1 1 1 1 2 1 1 1 1)

a) Without recursion, write add-digits to return the sum of the digits of its input.

(define (add-digits n) __)

b) Write repeateds-until, which takes a function f, a predicate pred?, and an input,

and returns the # of times f is called on input (ala repeated) until pred? is satisfies.
E.g., if (pred? input)  false, and (pred? (f input))  false, but
(pred? (f (f input)))  true, then (repeateds-until f pred? input)  2.

(define (repeateds-until f pred? input)

 (if ___

 ___))

c) Without recursion, write 9s that returns the first n multiples of 9.
Hint: first use repeated to generate a sentence of all the numbers from 1 to n, then given
that answer, think about how you would generate the first n multiples of 9. (3 pts)
 (define (9s n)

 __

 ______ repeated __)

d) Without recursion, write steps-until-9 that performs as described above. (3 pts)
 (define (steps-until-9 n)

 __

 __)

