
 Page 1 of 8

University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Fall 2008 Instructor: Dan Garcia 2008-12-18

, The Final Exam
Last name____________________________ First name __________________________

SID Number__________________________ TA’s name __________________________

(Sorry to ask this next question, but with 100+ students, there may be a wide range of behavior.)

The name of the student to my left is __

The name of the student to my right is __

I certify that my answers are all my own work. I certify that I shall not discuss the
exam with anyone in CS3 who has yet to take it until after the exam time.

Answer Key
Signature ___

Instructions
• Question 0: Fill in this front page and write

your name on the front of every page! The
exam is open book and open notes (no
computers). Put all answers on these pages;
don’t hand in any stray pieces of paper.

• You may NOT write any auxiliary

functions for a problem unless they are
specifically allowed in the question.

• Feel free to use any Scheme function that

was described in sections of the textbook we
have read without defining it yourself.

• You do not need to write comments for

functions you write unless you think the
grader will not understand what you are
trying to do otherwise.

• You have three hours, so relax. We estimate

30 minutes per question.

• Feel free to write λ instead of lambda.

• Feel free to write any comments you wish in

the margins of this front page. Good skill!

Grading Results

Question
Max.

Points
Points
Given

0 0 / -1

1 15

2 20

3 20

4 20

5 10

6 15

Total 100

Login: cs3-___

 Page 2 of 8

Question 1 – This Blankety blank blank exam… (15 pts, 1 pts each; 30 min)

Fill in the blanks below. The symbol “” means “evaluates to”.
• If any of the following display an error, write “ERROR” & describe the error.
• If any of the following go into an infinite loop, write “INFINITE LOOP”.
• If any of the following are impossible, write “IMPOSSIBLE”.
• If any of the return values are procedures, write <PROCEDURE name>

(e.g., cons  <PROCEDURE cons>)

(define (mystery f g) (f (g f))) (define (aced-cs3-final? score)
(define (call f n) (f n)) (if (equal? score (or 'seventy-five 75))
(define (1+ n) (+ n 1)) 'yes
(define (double n) (* n 2)) 'no))
(define (square n) (* n n))
 2

a) (bf (bl (word 1 (word 2 (word 3 "")))))  _____________
 (2)

b) (bf (bl (se 1 (se 2 (se 3 '())))))  _____________
 2

c) (car (cdr (cons 1 (cons 2 (cons 3 '())))))  _____________
 (2 (3 ()))
d) (car (cdr (list 1 (list 2 (list 3 '())))))  _____________
 2
e) (car (cdr (append '(1) (append '(2) (append '(3) '())))))  _____________
 IMPOSSIBLE
f) (bf (first ___))  (cal)
 '((_a_ cal) _b_)
g) (cdr (car ___))  (cal)
 no
h) (aced-cs3-final? 75)  _____________

 IMPOSSIBLE
i) (if (aced-cs3-final? ___________________________) 'a+ 'f)  f

 se|list (λ (f) 'cal)
j) (mystery _____________________ _______________________)  (cal)

 No explicit λ in this blank
 1+ square double 1+

k) (reduce call (list ___________________________________ 3))  65
 You may only use 1+,double, or square
 but you may use up to 4 of them here

l) A practical application for the Dragon Curve fractal would be…
(Hint: How would Dan use them if he were building a new house?)
 Tile the floor of a bathroom, as an art installation
__.

m) If you’re playing misére “1, 2, …, 10” against Gamesman, you want to play…

FIRST / SECOND / DOESN’T-MATTER-GAMESMAN-ALWAYS-WINS (circle one).

n) We want to write a num-arguments to return how many arguments a function call has:
(num-arguments (list 'a 'b))  2
(num-arguments (+ 10 21 40))  3
(num-arguments (no-arg-fun))  0
Now, write num-arguments: IMPOSSIBLE
(define (num-arguments expression) __)

Login: cs3-___

 Page 3 of 8

Question 2 – Cal beat HOFstra with a full-court uncompress… (20 pts; 30 min.)
You’ve probably been annoyed by the fact that every only takes a unary function and a
single word/sentence. What if we had a cool binary function f and two words/sentences and
wanted to call f on every pair of letters or words in them? We’d be stuck! Well, here is
every2, which exactly does what we want!

(define (every2 f SW1 SW2) ;; f is a binary function; SW1 & SW2 are sents/words
 (if (or (empty? SW1) (empty? SW2))
 '()
 (se (f (first SW1) (first SW2))
 (every2 f (bf SW1) (bf SW2)))))

(every2 word '(gol b) '(den ears))  (golden bears)
(every2 word 'gol 'den)  (gd oe ln)

That was the setup; here’s the cool problem. Compression is the idea that you can save
space by shrinking something down, transferring it, and then unshrinking it later. We
decide to do the same thing with sentences to eliminate repeat letters. We’ll compress
sentences by creating two sentences, which we’ll call CS and CD. CS has the repeated letters
(up to 9) removed, and CD tells us (for each letter in each word in CS) how many times to
repeat. All we care about is uncompression; assume compression is done for us.

(football win!!!!) (fotbal win!) (football win!!!!)
 (121112 1114)

Your job is to write uncompress. You may write any helper functions you wish, but
YOU MAY NOT USE EXPLICIT RECURSION; instead, use HOFs.

;; (uncompress CS CD)
;; INPUTS : CS (A compressed sentence. C stands for "Compressed")
;; : CD (An identical-length sentence with each Digit indicating how
;; : many times the corresponding letter in CS should be repeated.)
;; RETURNS : The original sentence before compression
;; EXAMPLE :
;; (uncompress '(woho goal! i win 10!)
;; '(1213 19111 1 111 142))  (woohooo goooooooooal! i win 10000!!)

(define (uncompress CS CD) ;; Helpers might make this problem easier…
 ;; Don’t use any EXPLICIT RECURSION;instead use HOFs
 ;; (even the helpers may not use explicit recursion)

(define (uncompress CS CD)
 (every2 (lambda (w wn) (accumulate word (every2 replicate w wn)))
 CS CD))

(define (replicate l n) ;; a letter l n times
 ((repeated (lambda (w) (word w l)) n) ""))

compress uncompress
CS

CD

Login: cs3-___

 Page 4 of 8

Question 3 – Run past the third car and then go deep… (20 pts; 30 min.)
You have probably found list-ref very useful. We’d like to write deep-list-ref which
takes a deep list L and an index i and finds the ith atom (starting at 0) in L:

(deep-list-ref '(i ((love) cs3) exams) 0)  i
(deep-list-ref '(i ((love) cs3) exams) 1)  love
(deep-list-ref '(i ((love) cs3) exams) 2)  cs3
(deep-list-ref '(i ((love) cs3) exams) 3)  exams
(deep-list-ref '(i ((love) cs3) exams) 4)  ERROR: car: wrong type of argument

(define (deep-list-ref L i)
 (dlr-helper L i 0))

 (define (dlr-helper L i seen)
 (cond
1 ((list? (car L))
2 (dlr-helper (cons (car L) (cdr L)) i seen))
3 ((= i seen)
4 (car L))
5 (else (dlr-helper (cdr L) i (+ seen 1)))))

a) There is only one buggy line above. The bug affects some (but not all) input. Fill in
the blanks below to complete the sentence. All arguments to deep-list-ref should
be as short & simple as possible.
 '(a b)
“Calling (deep-list-ref ___ 1)
 b
doesn’t trigger the bug and correctly returns _______________________________.”

 '((a) b)
b) “However, calling (deep-list-ref _____________________________________ 1)

 INFINITE-LOOP
causes/returns (fill in description) __
 b
when it should return ___.”

 4 (dlr-helper (append (car L) (cdr L)) i seen))
c) “Replacing line ____ with __

fixes the bug so that deep-list-ref works as advertised on all input.”

d) After you make the change in (c) your friend asks you an interesting question.
“What if you changed the order of the first two cond statements?” I.e., you swap lines
(1 & 2) with lines (3 & 4). What would be the result of the following calls?

 i
(deep-list-ref '(i ((love) cs3) exams) 0)  ________________ ;; want i

 ((love) cs3)
(deep-list-ref '(i ((love) cs3) exams) 1)  ________________ ;; want love

 cs3
(deep-list-ref '(i ((love) cs3) exams) 2)  ________________ ;; want cs3

Login: cs3-___

 Page 5 of 8

Put down your pen or pencil, stretch, take a deep breath, and proceed

If you followed our suggested pace, you should have 90 min left and be half done.

Login: cs3-___

 Page 6 of 8

Question 4 – fastest-game in the west… (20 pts; 30 min.)
Have you ever played a board game with a friend and wanted to see how fast the game
could theoretically end? That is, if the goal for both players were to finish the game as
fast as possible (regardless of who won), how many moves would be made? As a
reference, here are the brief specs for the big-3 (most important functions):

• (primitive-position pos)  w, l or t if pos is primitive (end of game), else #f
• (do-move pos move)  A new position, the result of making that move at that pos
• (generate-moves pos)  A list of all the moves available at position pos

For this problem, we will deal only with non-loopy games (i.e., games which never have
repeat positions that could cause the game to end in a draw). This is like exactly like
the games you’ve seen: 1,2,…,10, Tomorrow’s Tic-Tac-Toe, Northcott’s game (except
pieces always move towards the middle), Knight’s Dance (except you can’t move to a
square you’ve already occupied), Konane, and Surround.

a) Write next-positions that takes a position and returns a list of all of the positions
which can be reached from that position in exactly one move. Your solution should
work for any game in which the big-3 (above) are defined. (7 pts)

;; Example for “1,2,…,10” in which a position is represented as (L/R num)
;; & a move is either “1” or “2”. From 0, you can reach 1 or 2.
(next-positions ‘(L 0))  ((R 1) (R 2))

(define (next-positions pos)
 (map (λ (move) (do-move pos move)) (generate-moves pos))
 __)

b) Write fastest-game which should return the number of moves in the fastest

possible game. It should work for ANY non-loopy game!! You may not write
any helper functions; just fill in the blanks below. (13 points)

;; INPUTS : pos (The representation of a position of the game)
;; REQUIRES : (1) primitive-position, do-move and generate-moves
;; : already defined for the particular game.
;; : (2) pos must be a valid position
;; : (3) The game cannot be loopy
;; RETURNS : The number of moves in the fastest possible game (possibly 0)
;; EXAMPLES : Assuming primitive-position, do-move & generate-moves for
;; : the game “1,2,…,10”, which encodes its position as (L/R num)…
;; : (fastest-game ‘(L 0))  5 E.g., 0246810 (5 moves)
;; : NOTE: The representation of positions differs with each game.
;; : Assume fastest-game will be called with a valid position
;; : for that particular game (don’t do any error-checking).

(define (fastest-game pos)

 (primitive-position pos)
 (if ____________________________________

 0

 (+ 1 (reduce|apply min (map fastest-game (next-positions pos))))
 __))

Login: cs3-___

 Page 7 of 8

Question 5 – Magical Mystery Fractal, step right this way… (10 points; 30 min)

We’ve seen two remarkable fractals, the C-Curve and the Dragon Curve. They are shown
below for the first three generations, 0 through 2. The U label helps us remember which
direction “up” is – the curve will “bulge” towards it.

a) Draw the n= 2, 3, 4 and ∞ generations below for the new Mystery Curve. You don’t
have to draw the arrowheads – we just draw them to highlight the differences
between the fractals. If you do draw the arrowheads, draw them very small. If
you’re stuck, it might help to draw another iteration of C-Curve or Dragon Curve.

(Use the area below for scratch; put your answers in the boxes above when you’re done.)

a) Below is the code for the Dragon Curve that you’ve seen before. Change as few
lines as possible so that it implements the Mystery Curve. When changing a line,
circle the number above and write the new line to the right of it.

(define (fractal P0 P1 n) ;; 1
 (if (= level 0) ;; 2
 (draw-line-P P0 P1) ;; 3
 (let ((Pm (coord-P P0 P1 (make-V -½ ½)))) ;; 4
 (fractal P0 Pm (- n 1)) ;; 5  (fractal Pm P0 (- n 1))
 (fractal P1 Pm (- n 1))))) ;; 6

n=0 n=1 n=2 n=3

C-Curve

Dragon
Curve

n=4 n=∞

Mystery
Curve

…

…

…

…

U
U U

U

U

U
U

U U

Pm

P1 P0

Login: cs3-___

 Page 8 of 8

Question 6 – It’s a small world after all (aka MapReduce) (15 points; 30 min)

For both problems, assume identity is defined as usual: (define (identity n) n)

a) Fill in the blanks below. The file "/randoms" has 10 random numbers, and
"/shakesp" has the collected works of William Shakespeare.

 letter max identity
(reduce-map-______ _________________________ _________________________ "/randoms")
;; return largest digit in "/randoms"
 word or (λ (n) (equal? 42 n))
(reduce-map-______ _________________________ _________________________ "/randoms")
;; return #t if 42 (my lucky number) is in "/randoms", #f otherwise
 sent + (λ (s) 1)
(reduce-map-______ _________________________ _________________________ "/shakesp")
;; return number of lines Shakespeare wrote

We modify reduce-map-word so the left-to-right ordering of the inputs is preserved in the
map and reduce stage, but the reducing can be paired up any way it wants. There can be
many equally possible reductions. How many, though? Let’s see a specific example.

b) How many possible reductions (as a function of n) are there for a call to the
function (reduce-map-word f identity "numbers"), if the numbers file contains the
numbers 1 through n on different lines? You may find 1upto useful, which returns a
sentence of the numbers 1 upto (not including) n. E.g., (1upto 5)  (1 2 3 4)

(num-reduces 1)  1 ;; 1  (reduce f ‘(1)) doesn’t even call f, so 1 reduction

(num-reduces 2)  1 ;; (f 1 2)

(num-reduces 3)  2 ;; (f 1 (f 2 3)) or (f (f 1 2) 3)

(num-reduces 4)  5 ;; Below. See the pattern? E.g., (num-reduces 3) is in there…

 (f 1 (f 2 (f 3 4))) (f 1 (f (f 2 3) 4)) (f (f 1 2) (f 3 4)) (f (f 1 (f 2 3)) 4) (f (f (f 1 2) 3) 4)

(num-reduces 5)  14 ;; Too many to print

(define (num-reduces n)
 (if (< n 3)
 1
 (accumulate + (every (λ (i) (* (num-reduces i) (num-reduces (- n i))))
 __
 (1upto n)))))
 __))

1 2

1 2 3 1 2 3

1 3 4 2 1 3 4 2 1 3 4 2 1 3 4 2 1 3 4 2

